Supermodel/Src/Graphics/Models.cpp

842 lines
30 KiB
C++

/**
** Supermodel
** A Sega Model 3 Arcade Emulator.
** Copyright 2011 Bart Trzynadlowski, Nik Henson
**
** This file is part of Supermodel.
**
** Supermodel is free software: you can redistribute it and/or modify it under
** the terms of the GNU General Public License as published by the Free
** Software Foundation, either version 3 of the License, or (at your option)
** any later version.
**
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
** more details.
**
** You should have received a copy of the GNU General Public License along
** with Supermodel. If not, see <http://www.gnu.org/licenses/>.
**/
/*
* Models.cpp
*
* Model parsing, caching, and drawing.
*
* TO-DO List:
* -----------
* - More should be predecoded into the polygon structures, so that things like
* texture base coordinates are not re-decoded in two different places!
*/
#include <math.h>
#include <string.h>
#include "Supermodel.h"
/******************************************************************************
Definitions and Constants
******************************************************************************/
/*
* VBO Vertex Layout
*
* All vertex information is stored in an array of GLfloats. Offset and size
* information is defined here for now.
*/
#define VBO_VERTEX_OFFSET_X 0 // vertex X *
#define VBO_VERTEX_OFFSET_Y 1 // vertex Y *
#define VBO_VERTEX_OFFSET_Z 2 // vertex Z *
#define VBO_VERTEX_OFFSET_NX 3 // normal X *
#define VBO_VERTEX_OFFSET_NY 4 // normal Y *
#define VBO_VERTEX_OFFSET_NZ 5 // normal Z *
#define VBO_VERTEX_OFFSET_R 6 // color (untextured polys) and material (textured polys) R c (w/ texenable?)
#define VBO_VERTEX_OFFSET_G 7 // color and material G
#define VBO_VERTEX_OFFSET_B 8 // color and material B
#define VBO_VERTEX_OFFSET_TRANSLUCENCE 9 // translucence level (0.0 fully transparent, 1.0 opaque) *
#define VBO_VERTEX_OFFSET_LIGHTENABLE 10 // lighting enabled (0.0 luminous, 1.0 light enabled) *
#define VBO_VERTEX_OFFSET_FOGINTENSITY 11 // fog intensity (0.0 no fog applied, 1.0 all fog applied) * (combine w/ lightenable, making one negative)
#define VBO_VERTEX_OFFSET_U 12 // texture U coordinate (in texels, relative to sub-texture) *
#define VBO_VERTEX_OFFSET_V 13 // texture V coordinate *
#define VBO_VERTEX_OFFSET_TEXTURE_X 14 // sub-texture parameters, X (position in overall texture map, in texels) *
#define VBO_VERTEX_OFFSET_TEXTURE_Y 15 // "" Y "" *
#define VBO_VERTEX_OFFSET_TEXTURE_W 16 // sub-texture parameters, width of texture in texels *
#define VBO_VERTEX_OFFSET_TEXTURE_H 17 // "" height of texture in texels *
#define VBO_VERTEX_OFFSET_TEXPARAMS_EN 18 // texture parameter: ==1 texturing enabled, ==0 disabled (per-polygon) c (w/ R?)
#define VBO_VERTEX_OFFSET_TEXPARAMS_TRANS 19 // texture parameter: >=0 use transparency bit, <0 no transparency (per-polygon) c (w/ contour?)
#define VBO_VERTEX_OFFSET_TEXPARAMS_UWRAP 20 // texture parameters: U wrap mode: ==1 mirrored repeat, ==0 normal repeat
#define VBO_VERTEX_OFFSET_TEXPARAMS_VWRAP 21 // "" V wrap mode ""
#define VBO_VERTEX_OFFSET_TEXFORMAT_CONTOUR 22 // contour texture: >0 indicates contour texture (see also texParams.trans) c (w/ trans?)
#define VBO_VERTEX_SIZE 23 // total size (may include padding for alignment)
/******************************************************************************
Display Lists
Every instance of a model encountered in the scene database during rendering
is stored in the display list along with its current transformation matrices
and other state information. Display lists are bound to model caches for
performance: only one VBO has to be bound for an entire display list.
Binding display lists to model caches may cause priority problems among
alpha polygons. Therefore, it may be necessary in the future to decouple them.
******************************************************************************/
// Draws the display list
void CRender3D::DrawDisplayList(ModelCache *Cache, POLY_STATE state)
{
DisplayList *D;
// Bind and activate VBO (pointers activate currently bound VBO)
glBindBuffer(GL_ARRAY_BUFFER, Cache->vboID);
glVertexPointer(3, GL_FLOAT, VBO_VERTEX_SIZE*sizeof(GLfloat), (GLvoid *) (VBO_VERTEX_OFFSET_X*sizeof(GLfloat)));
glNormalPointer(GL_FLOAT, VBO_VERTEX_SIZE*sizeof(GLfloat), (GLvoid *) (VBO_VERTEX_OFFSET_NX*sizeof(GLfloat)));
glTexCoordPointer(2, GL_FLOAT, VBO_VERTEX_SIZE*sizeof(GLfloat), (GLvoid *) (VBO_VERTEX_OFFSET_U*sizeof(GLfloat)));
glColorPointer(3, GL_FLOAT, VBO_VERTEX_SIZE*sizeof(GLfloat), (GLvoid *) (VBO_VERTEX_OFFSET_R*sizeof(GLfloat)));
glVertexAttribPointer(subTextureLoc, 4, GL_FLOAT, GL_FALSE, VBO_VERTEX_SIZE*sizeof(GLfloat), (GLvoid *) (VBO_VERTEX_OFFSET_TEXTURE_X*sizeof(GLfloat)));
glVertexAttribPointer(texParamsLoc, 4, GL_FLOAT, GL_FALSE, VBO_VERTEX_SIZE*sizeof(GLfloat), (GLvoid *) (VBO_VERTEX_OFFSET_TEXPARAMS_EN*sizeof(GLfloat)));
glVertexAttribPointer(texFormatLoc, 1, GL_FLOAT, GL_FALSE, VBO_VERTEX_SIZE*sizeof(GLfloat), (GLvoid *) (VBO_VERTEX_OFFSET_TEXFORMAT_CONTOUR*sizeof(GLfloat)));
glVertexAttribPointer(transLevelLoc, 1, GL_FLOAT, GL_FALSE, VBO_VERTEX_SIZE*sizeof(GLfloat), (GLvoid *) (VBO_VERTEX_OFFSET_TRANSLUCENCE*sizeof(GLfloat)));
glVertexAttribPointer(lightEnableLoc, 1, GL_FLOAT, GL_FALSE, VBO_VERTEX_SIZE*sizeof(GLfloat), (GLvoid *) (VBO_VERTEX_OFFSET_LIGHTENABLE*sizeof(GLfloat)));
glVertexAttribPointer(fogIntensityLoc, 1, GL_FLOAT, GL_FALSE, VBO_VERTEX_SIZE*sizeof(GLfloat), (GLvoid *) (VBO_VERTEX_OFFSET_FOGINTENSITY*sizeof(GLfloat)));
// Set up state
if (state == POLY_STATE_ALPHA)
{
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
}
else
{
glDisable(GL_BLEND);
}
// Draw if there are items in the list
D = Cache->ListHead[state];
while (D != NULL)
{
if (D->isViewport)
{
if (D->next != NULL) // if nothing follows, no point in doing this
{
if (!D->next->isViewport)
{
glUniform3fv(lightingLoc, 2, D->Data.Viewport.lightingParams);
glUniformMatrix4fv(projectionMatrixLoc, 1, GL_FALSE, D->Data.Viewport.projectionMatrix);
glFogf(GL_FOG_DENSITY, D->Data.Viewport.fogParams[3]);
glFogf(GL_FOG_START, D->Data.Viewport.fogParams[4]);
glFogfv(GL_FOG_COLOR, &(D->Data.Viewport.fogParams[0]));
glUniform4fv(spotEllipseLoc, 1, D->Data.Viewport.spotEllipse);
glUniform2fv(spotRangeLoc, 1, D->Data.Viewport.spotRange);
glUniform3fv(spotColorLoc, 1, D->Data.Viewport.spotColor);
glViewport(D->Data.Viewport.x, D->Data.Viewport.y, D->Data.Viewport.width, D->Data.Viewport.height);
}
}
}
else
{
glUniformMatrix4fv(modelViewMatrixLoc, 1, GL_FALSE, D->Data.Model.modelViewMatrix);
glDrawArrays(GL_TRIANGLES, D->Data.Model.index, D->Data.Model.numVerts);
}
D = D->next;
}
}
// Appends an instance of a model or viewport to the display list, copying over the required state information
bool CRender3D::AppendDisplayList(ModelCache *Cache, bool isViewport, const struct VBORef *Model)
{
int lm, i;
if ((Cache->listSize+2) > Cache->maxListSize) // a model may have 2 states (viewports are added to both display lists)
return FAIL;
//return ErrorLog("Display list is full.");
// Insert states into the display list
for (i = 0; i < 2; i++)
{
if (isViewport)
{
// Get index for new display list item and advance to next one
lm = Cache->listSize++;
// Viewport parameters
Cache->List[lm].Data.Viewport.x = viewportX;
Cache->List[lm].Data.Viewport.y = viewportY;
Cache->List[lm].Data.Viewport.width = viewportWidth;
Cache->List[lm].Data.Viewport.height = viewportHeight;
// Copy over lighting and fog state
memcpy(Cache->List[lm].Data.Viewport.lightingParams, lightingParams, sizeof(lightingParams));
memcpy(Cache->List[lm].Data.Viewport.fogParams, fogParams, sizeof(fogParams));
memcpy(Cache->List[lm].Data.Viewport.spotEllipse, spotEllipse, sizeof(spotEllipse));
memcpy(Cache->List[lm].Data.Viewport.spotRange, spotRange, sizeof(spotRange));
memcpy(Cache->List[lm].Data.Viewport.spotColor, spotColor, sizeof(spotColor));
// Copy projection matrix
glGetFloatv(GL_PROJECTION_MATRIX, Cache->List[lm].Data.Viewport.projectionMatrix);
}
else if (Model->numVerts[i] > 0) // vertices exist for this state
{
// Get index for new display list item and advance to next one
lm = Cache->listSize++;
// Point to VBO for current model and state
Cache->List[lm].Data.Model.index = Model->index[i];
Cache->List[lm].Data.Model.numVerts = Model->numVerts[i];
// Copy modelview matrix
glGetFloatv(GL_MODELVIEW_MATRIX, Cache->List[lm].Data.Model.modelViewMatrix);
}
else // nothing to do, continue loop
continue;
// Update list pointers and set list node type
Cache->List[lm].isViewport = isViewport;
Cache->List[lm].next = NULL; // current end of list
if (Cache->ListHead[i] == NULL)
{
Cache->ListHead[i] = &(Cache->List[lm]);
Cache->ListTail[i] = Cache->ListHead[i];
}
else
{
Cache->ListTail[i]->next = &(Cache->List[lm]);
Cache->ListTail[i] = &(Cache->List[lm]);
}
}
return OKAY;
}
// Clears the display list in preparation for a new frame
void CRender3D::ClearDisplayList(ModelCache *Cache)
{
Cache->listSize = 0;
for (int i = 0; i < 2; i++)
{
Cache->ListHead[i] = NULL;
Cache->ListTail[i] = NULL;
}
}
/******************************************************************************
Model Caching
Note that as vertices are inserted into the appropriate local vertex buffer
(sorted by polygon state -- alpha and normal), the VBO index is advanced to
reserve space and does not correspond to the actual position of each vertex.
Vertices are copied in batches sorted by state when the model is complete.
******************************************************************************/
static void CrossProd(GLfloat out[3], GLfloat a[3], GLfloat b[3])
{
out[0] = a[1]*b[2]-a[2]*b[1];
out[1] = a[2]*b[0]-a[0]*b[2];
out[2] = a[0]*b[1]-a[1]*b[0];
}
// Inserts a vertex into the local vertex buffer, incrementing both the local and VBO pointers. The normal is scaled by normFlip.
void CRender3D::InsertVertex(ModelCache *Cache, const Vertex *V, const Poly *P, float normFlip)
{
GLfloat r, g, b;
GLfloat translucence, fogIntensity, texWidth, texHeight, texBaseX, texBaseY, contourProcessing;
unsigned baseIdx, texFormat, texEnable, lightEnable, modulate, colorIdx;
int s, texPage;
// Texture selection
texEnable = P->header[6]&0x04000000;
texFormat = (P->header[6]>>7)&7;
texWidth = (GLfloat) (32<<((P->header[3]>>3)&7));
texHeight = (GLfloat) (32<<((P->header[3]>>0)&7));
texPage = (P->header[4]&0x40) ? 1024 : 0; // treat texture page as Y coordinate
texBaseX = (GLfloat) (32*(((P->header[4]&0x1F)<<1)|((P->header[5]>>7)&1))) + texOffsetXY[0];
texBaseY = (GLfloat) (32*(P->header[5]&0x1F)+texPage) + texOffsetXY[1];
/*
* Lighting and Color Modulation:
*
* It appears that there is a modulate bit which causes the polygon color
* to be multiplied by texel colors. However, if polygons are luminous,
* this appears to be disabled (not quite correct yet, though).
*/
lightEnable = !(P->header[6]&0x00010000);
modulate = !(P->header[4]&0x80);
modulate = P->header[3]&0x80; // seems to work better
// Material color
if ((P->header[1]&2) == 0)
{
colorIdx = (P->header[4]>>20)&0x7FF;
b = (GLfloat) (polyRAM[0x400+colorIdx]&0xFF) * (1.0f/255.0f);
g = (GLfloat) ((polyRAM[0x400+colorIdx]>>8)&0xFF) * (1.0f/255.0f);
r = (GLfloat) ((polyRAM[0x400+colorIdx]>>16)&0xFF) * (1.0f/255.0f);
}
else
{
// Colors are 8-bit (almost certainly true, see Star Wars)
r = (GLfloat) (P->header[4]>>24) * (1.0f/255.0f);
g = (GLfloat) ((P->header[4]>>16)&0xFF) * (1.0f/255.0f);
b = (GLfloat) ((P->header[4]>>8)&0xFF) * (1.0f/255.0f);
}
// Determine modulation settings
if (texEnable)
{
//if (!lightEnable|| !modulate)
if (!modulate)
r = g = b = 1.0f;
}
#if 0
if (texFormat==5)//texFormat==6||texFormat==2)
{
//printf("%03X\n", P->header[4]>>8);
//texEnable=0;
g=b=1.0;
r=1.0f;
}
#endif
#if 0
if ((P->header[testWord]&(1<<testBit)))
{
texEnable = 0;
r=b=0;
g=1.0f;
if (!lightEnable)
b=1.0f;
lightEnable=0;
}
#endif
// Determine whether polygon is translucent
translucence = (GLfloat) ((P->header[6]>>18)&0x1F) * (1.0f/31.0f);
if ((P->header[6]&0x00800000)) // if set, polygon is opaque
translucence = 1.0f;
// Fog intensity (for luminous polygons)
fogIntensity = (GLfloat) ((P->header[6]>>11)&0x1F) * (1.0f/31.0f);
if (!(P->header[6]&0x00010000)) // if not luminous, always use full fog intensity
fogIntensity = 1.0f;
// Contour processing
if ((P->header[6]&0x80000000) || (texFormat==7)) // contour processing enabled or alpha texture
contourProcessing = 1.0f;
else
contourProcessing = -1.0f;
// Store to local vertex buffer
s = P->state;
baseIdx = Cache->curVertIdx[s]*VBO_VERTEX_SIZE;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_X] = V->x;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_Y] = V->y;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_Z] = V->z;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_R] = r;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_G] = g;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_B] = b;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_TRANSLUCENCE] = translucence;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_LIGHTENABLE] = lightEnable ? 1.0f : 0.0f;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_FOGINTENSITY] = fogIntensity;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_NX] = V->n[0]*normFlip;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_NY] = V->n[1]*normFlip;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_NZ] = V->n[2]*normFlip;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_U] = V->u;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_V] = V->v;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_TEXTURE_X] = texBaseX;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_TEXTURE_Y] = texBaseY;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_TEXTURE_W] = texWidth;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_TEXTURE_H] = texHeight;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_TEXPARAMS_EN] = texEnable ? 1.0f : 0.0f;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_TEXPARAMS_TRANS] = contourProcessing;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_TEXPARAMS_UWRAP] = (P->header[2]&2) ? 1.0f : 0.0f;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_TEXPARAMS_VWRAP] = (P->header[2]&1) ? 1.0f : 0.0f;
Cache->verts[s][baseIdx + VBO_VERTEX_OFFSET_TEXFORMAT_CONTOUR] = (texFormat==0) ? 1.0f : 0.0f;
Cache->curVertIdx[s]++;
Cache->vboCurOffset += VBO_VERTEX_SIZE*sizeof(GLfloat);
}
bool CRender3D::InsertPolygon(ModelCache *Cache, const Poly *P)
{
GLfloat n[3], v1[3], v2[3], normZFlip;
int i;
bool doubleSided;
// Bounds testing: up to 12 triangles will be inserted (worst case: double sided quad is 6 triangles)
if ((Cache->curVertIdx[P->state]+6*2) >= Cache->maxVertIdx)
return ErrorLocalVertexOverflow(); // local buffers are not expected to overflow
if ((Cache->vboCurOffset+6*2*VBO_VERTEX_SIZE*sizeof(GLfloat)) >= Cache->vboMaxOffset)
return FAIL; // this just indicates we may need to re-cache
// Is the polygon double sided?
doubleSided = (P->header[1]&0x10) ? true : false;
/*
* Determine polygon winding by taking cross product of vectors formed from
* 3 polygon vertices (the middle one being the origin). In reality, back-
* face culling is determined by the polygon normal and two-sided polygons
* exist. This is just a temporary hack.
*
* If the cross product points the same way as the normal, the winding is
* clockwise and can be kept, otherwise it must be reversed.
*
* NOTE: This assumes that the Model 3 base coordinate system's Z axis
* (into the screen) -1, like OpenGL's. For some games (eg., Lost World),
* this is not the case. Assuming games consistently use the same type of
* coordinate system matrix, it seems that inverting the whole dot product
* when Z is positive helps. I don't understand why...
*/
v1[0] = P->Vert[0].x-P->Vert[1].x;
v1[1] = P->Vert[0].y-P->Vert[1].y;
v1[2] = P->Vert[0].z-P->Vert[1].z;
v2[0] = P->Vert[2].x-P->Vert[1].x;
v2[1] = P->Vert[2].y-P->Vert[1].y;
v2[2] = P->Vert[2].z-P->Vert[1].z;
CrossProd(n,v1,v2);
normZFlip = -1.0f*matrixBasePtr[0x5]; // coordinate system m13 component
if (normZFlip*(n[0]*P->n[0]+n[1]*P->n[1]+n[2]*P->n[2]) >= 0.0) // clockwise winding confirmed
{
// Store the first triangle
for (i = 0; i < 3; i++)
{
InsertVertex(Cache, &(P->Vert[i]), P, 1.0f);
}
if (doubleSided) // store backside as counter-clockwise
{
for (i = 2; i >=0; i--)
{
InsertVertex(Cache, &(P->Vert[i]), P, -1.0f);
}
}
// If quad, second triangle will just be vertices 1, 3, 4
if (P->numVerts == 4)
{
InsertVertex(Cache, &(P->Vert[0]), P, 1.0f);
InsertVertex(Cache, &(P->Vert[2]), P, 1.0f);
InsertVertex(Cache, &(P->Vert[3]), P, 1.0f);
if (doubleSided)
{
InsertVertex(Cache, &(P->Vert[0]), P, -1.0f);
InsertVertex(Cache, &(P->Vert[3]), P, -1.0f);
InsertVertex(Cache, &(P->Vert[2]), P, -1.0f);
}
}
}
else // counterclockwise winding, reverse it
{
for (i = 2; i >=0; i--)
{
InsertVertex(Cache, &(P->Vert[i]), P, 1.0f);
}
if (doubleSided) // store backside as clockwise
{
for (i = 0; i < 3; i++)
{
InsertVertex(Cache, &(P->Vert[i]), P, -1.0f);
}
}
if (P->numVerts == 4)
{
InsertVertex(Cache, &(P->Vert[0]), P, 1.0f);
InsertVertex(Cache, &(P->Vert[3]), P, 1.0f);
InsertVertex(Cache, &(P->Vert[2]), P, 1.0f);
if (doubleSided)
{
InsertVertex(Cache, &(P->Vert[0]), P, -1.0f);
InsertVertex(Cache, &(P->Vert[2]), P, -1.0f);
InsertVertex(Cache, &(P->Vert[3]), P, -1.0f);
}
}
}
return OKAY;
}
// Begins caching a new model by resetting to the start of the local vertex buffer
bool CRender3D::BeginModel(ModelCache *Cache)
{
int m;
// Determine whether we've exceeded the model cache limits (caller will have to recache)
if (Cache->numModels >= Cache->maxModels)
return FAIL; // too many models
//return ErrorLog("Too many %s models.", Cache->dynamic?"dynamic":"static");
m = Cache->numModels;
// Reset to the beginning of the local vertex buffer
for (int i = 0; i < 2; i++)
Cache->curVertIdx[i] = 0;
// Clear the VBO reference to 0
memset(&(Cache->Models[m]), 0, sizeof(VBORef));
// Record starting index of first opaque polygon in VBO (alpha poly index will be re-set in EndModel())
Cache->Models[m].index[POLY_STATE_NORMAL] = Cache->vboCurOffset/(VBO_VERTEX_SIZE*sizeof(GLfloat));
Cache->Models[m].index[POLY_STATE_ALPHA] = Cache->Models[m].index[POLY_STATE_NORMAL];
return OKAY;
}
// Uploads all vertices from the local vertex buffer to the VBO, sets up the VBO reference, updates the LUT
struct VBORef *CRender3D::EndModel(ModelCache *Cache, int lutIdx, UINT16 texOffset)
{
struct VBORef *Model;
int m;
m = Cache->numModels++;
Model = &(Cache->Models[m]);
// Record the number of vertices, completing the VBORef
for (int i = 0; i < 2; i++)
Model->numVerts[i] = Cache->curVertIdx[i];
// First alpha polygon immediately follows the normal polygons
Model->index[POLY_STATE_ALPHA] = Model->index[POLY_STATE_NORMAL] + Model->numVerts[POLY_STATE_NORMAL];
// Upload from local vertex buffer to real VBO
glBindBuffer(GL_ARRAY_BUFFER, Cache->vboID);
if (Model->numVerts[POLY_STATE_NORMAL] > 0)
glBufferSubData(GL_ARRAY_BUFFER, Model->index[POLY_STATE_NORMAL]*VBO_VERTEX_SIZE*sizeof(GLfloat), Cache->curVertIdx[POLY_STATE_NORMAL]*VBO_VERTEX_SIZE*sizeof(GLfloat), Cache->verts[POLY_STATE_NORMAL]);
if (Model->numVerts[POLY_STATE_ALPHA] > 0)
glBufferSubData(GL_ARRAY_BUFFER, Model->index[POLY_STATE_ALPHA]*VBO_VERTEX_SIZE*sizeof(GLfloat), Cache->curVertIdx[POLY_STATE_ALPHA]*VBO_VERTEX_SIZE*sizeof(GLfloat), Cache->verts[POLY_STATE_ALPHA]);
// Record LUT index in the model VBORef
Model->lutIdx = lutIdx;
// Texture offset of this model state
Model->texOffset = texOffset;
// Update the LUT and link up to any existing model that already exists here
if (Cache->lut[lutIdx] >= 0) // another texture offset state already cached
Model->nextTexOffset = &(Cache->Models[Cache->lut[lutIdx]]);
Cache->lut[lutIdx] = m;
// Return a pointer to the cached model's VBO reference
return Model;
}
/*
* CacheModel():
*
* Decodes and caches a complete model. Returns NULL if any sort of overflow in
* the cache occurred. In this case, the model cache should be cleared before
* being used again because an incomplete model will be stored, wasting vertex
* buffer space.
*
* A pointer to the VBO reference for the cached model is returned when
* successful.
*/
struct VBORef *CRender3D::CacheModel(ModelCache *Cache, int lutIdx, UINT16 texOffset, const UINT32 *data)
{
Vertex Prev[4]; // previous vertices
int numPolys = 0;
bool done = false;
// Sega Rally 2 bad models
//if (lutIdx == 0x27a1 || lutIdx == 0x21e0)
// return FAIL;
if (data == NULL)
return NULL;
// Start constructing a new model
if (FAIL == BeginModel(Cache))
return NULL; // too many models!
// Cache all polygons
while (!done)
{
Poly P; // current polygon
GLfloat mag;
GLfloat uvScale;
int texEnable, texFormat, texWidth, texHeight, texPage, texBaseX, texBaseY;
unsigned i, j, vmask;
UINT32 ix, iy, iz, it;
// Set current header pointer (header is 7 words)
P.header = data;
data += 7; // data will now point to first vertex
if (P.header[6]==0)// || P.header[0]==0)
break;
// Obtain basic polygon parameters
done = P.header[1]&4; // last polygon?
P.numVerts = (P.header[0]&0x40)?4:3;
// Texture data
texEnable = P.header[6]&0x04000000;
texFormat = (P.header[6]>>7)&7;
texWidth = (32<<((P.header[3]>>3)&7));
texHeight = (32<<((P.header[3]>>0)&7));
texPage = (P.header[4]&0x40) ? 1024 : 0; // treat texture page as Y coordinate
texBaseX = (32*(((P.header[4]&0x1F)<<1)|((P.header[5]>>7)&1))) + (int)texOffsetXY[0];
texBaseY = (32*(P.header[5]&0x1F)+texPage) + (int)texOffsetXY[1];
texBaseX &= 2047;
texBaseY &= 2047;
uvScale = (P.header[1]&0x40)?1.0f:(1.0f/8.0f);
// Determine whether this is an alpha polygon (TODO: when testing textures, test if texturing enabled? Might not matter)
if (((P.header[6]&0x00800000)==0) || // translucent polygon
(texFormat==7) || // RGBA4 texture
(texFormat==4)) // A4L4 texture
P.state = POLY_STATE_ALPHA;
else
P.state = POLY_STATE_NORMAL;
if (texFormat==1) // A4L4 interleaved
{
if ((P.header[6]&2))
P.state = POLY_STATE_ALPHA;
else
P.state = POLY_STATE_NORMAL;
}
if (texFormat==3) // A4L4 interleaved
{
if ((P.header[6]&4))
P.state = POLY_STATE_ALPHA;
else
P.state = POLY_STATE_NORMAL;
}
// Decode the texture
if (texEnable)
DecodeTexture(texFormat, texBaseX, texBaseY, texWidth, texHeight);
// Polygon normal is in upper 24 bits: sign + 1.22 fixed point
P.n[0] = (GLfloat) (((INT32)P.header[1])>>8) * (1.0f/4194304.0f);
P.n[1] = (GLfloat) (((INT32)P.header[2])>>8) * (1.0f/4194304.0f);
P.n[2] = (GLfloat) (((INT32)P.header[3])>>8) * (1.0f/4194304.0f);
// Fetch reused vertices according to bitfield, then new verts
i = 0;
j = 0;
vmask = 1;
for (i = 0; i < 4; i++) // up to 4 reused vertices
{
if ((P.header[0x00]&vmask))
{
P.Vert[j] = Prev[i];
++j;
}
vmask <<= 1;
}
for (; j < P.numVerts; j++) // remaining vertices are new and defined here
{
// Fetch vertices
ix = data[0];
iy = data[1];
iz = data[2];
it = data[3];
/*
// Check for bad vertices (Sega Rally 2)
if (((ix>>28)==7) || ((iy>>28)==7) || ((iz>>28)==7))
{
//printf("%X ix=%08X, iy=%08X, iz=%08X\n", lutIdx, ix, iy, iz);
goto StopDecoding;
}
*/
// Decode vertices
P.Vert[j].x = (GLfloat) (((INT32)ix)>>8) * vertexFactor;
P.Vert[j].y = (GLfloat) (((INT32)iy)>>8) * vertexFactor;
P.Vert[j].z = (GLfloat) (((INT32)iz)>>8) * vertexFactor;
P.Vert[j].n[0] = P.n[0]+(GLfloat)(INT8)(ix&0xFF); // vertex normals are offset from polygon normal
P.Vert[j].n[1] = P.n[1]+(GLfloat)(INT8)(iy&0xFF);
P.Vert[j].n[2] = P.n[2]+(GLfloat)(INT8)(iz&0xFF);
P.Vert[j].u = (GLfloat) ((UINT16)(it>>16)) * uvScale; // TO-DO: might these be signed?
P.Vert[j].v = (GLfloat) ((UINT16)(it&0xFFFF)) * uvScale;
data += 4;
// Normalize the vertex normal
mag = sqrt(P.Vert[j].n[0]*P.Vert[j].n[0]+P.Vert[j].n[1]*P.Vert[j].n[1]+P.Vert[j].n[2]*P.Vert[j].n[2]);
P.Vert[j].n[0] /= mag;
P.Vert[j].n[1] /= mag;
P.Vert[j].n[2] /= mag;
}
// Copy current vertices into previous vertex array
for (i = 0; i < 4; i++)
Prev[i] = P.Vert[i];
// Copy this polygon into the model buffer
if (OKAY != InsertPolygon(Cache,&P))
return NULL;
++numPolys;
}
// Finish model and enter it into the LUT
return EndModel(Cache,lutIdx,texOffset);
}
/******************************************************************************
Cache Management
******************************************************************************/
/*
* Look up a model. Use this to determine if a model needs to be cached
* (returns NULL if so).
*/
struct VBORef *CRender3D::LookUpModel(ModelCache *Cache, int lutIdx, UINT16 texOffset)
{
int m = Cache->lut[lutIdx];
// Has any state associated with this model LUT index been cached at all?
if (m < 0)
return NULL;
// Has the specified texture offset been cached?
for (struct VBORef *Model = &(Cache->Models[m]); Model != NULL; Model = Model->nextTexOffset)
{
if (Model->texOffset == texOffset)
return Model;
}
return NULL; // no match found, we must cache this new model state
}
// Discard all models in the cache and the display list
void CRender3D::ClearModelCache(ModelCache *Cache)
{
Cache->vboCurOffset = 0;
for (int i = 0; i < 2; i++)
Cache->curVertIdx[i] = 0;
if (!Cache->dynamic)
memset(Cache->lut, 0xFF, sizeof(INT16)*Cache->lutSize); // set all to -1
else
{
for (int i = 0; i < Cache->numModels; i++)
Cache->lut[Cache->Models[i].lutIdx] = -1;
}
Cache->numModels = 0;
ClearDisplayList(Cache);
}
bool CRender3D::CreateModelCache(ModelCache *Cache, unsigned vboMaxVerts,
unsigned localMaxVerts, unsigned maxNumModels, unsigned numLUTEntries,
unsigned displayListSize, bool isDynamic)
{
unsigned i;
int vboBytes, localBytes;
bool success;
Cache->dynamic = isDynamic;
/*
* VBO allocation:
*
* Progressively smaller VBOs, in steps of localMaxVerts are allocated
* until successful. If the size dips below localMaxVerts, localMaxVerts is
* attempted as the final try.
*/
glGetError(); // clear error flag
glGenBuffers(1, &(Cache->vboID));
glBindBuffer(GL_ARRAY_BUFFER, Cache->vboID);
vboBytes = vboMaxVerts*VBO_VERTEX_SIZE*sizeof(GLfloat);
localBytes = localMaxVerts*VBO_VERTEX_SIZE*sizeof(GLfloat);
// Try allocating until size is
success = false;
while (vboBytes >= localBytes)
{
glBufferData(GL_ARRAY_BUFFER, vboBytes, 0, isDynamic?GL_STREAM_DRAW:GL_STATIC_DRAW);
if (glGetError() == GL_NO_ERROR)
{
success = true;
break;
}
vboBytes -= localBytes;
}
if (!success)
{
// Last ditch attempt: try the local buffer size
vboBytes = localBytes;
glBufferData(GL_ARRAY_BUFFER, vboBytes, 0, isDynamic?GL_STREAM_DRAW:GL_STATIC_DRAW);
if (glGetError() != GL_NO_ERROR)
return ErrorLog("OpenGL was unable to provide a %s vertex buffer.", isDynamic?"dynamic":"static");
}
DebugLog("%s vertex buffer size: %1.2f MB", isDynamic?"Dynamic":"Static", (float)vboBytes/(float)0x100000);
InfoLog("%s vertex buffer size: %1.2f MB", isDynamic?"Dynamic":"Static", (float)vboBytes/(float)0x100000);
// Set the VBO to the size we obtained
Cache->vboMaxOffset = vboBytes;
Cache->vboCurOffset = 0;
// Attempt to allocate space for local VBO
for (i = 0; i < 2; i++)
{
Cache->verts[i] = new(std::nothrow) GLfloat[localMaxVerts*VBO_VERTEX_SIZE];
Cache->curVertIdx[i] = 0;
}
Cache->maxVertIdx = localMaxVerts;
// ... model array
Cache->Models = new(std::nothrow) VBORef[maxNumModels];
Cache->maxModels = maxNumModels;
Cache->numModels = 0;
// ... LUT
Cache->lut = new(std::nothrow) INT16[numLUTEntries];
Cache->lutSize = numLUTEntries;
// ... display list
Cache->List = new(std::nothrow) DisplayList[displayListSize];
ClearDisplayList(Cache);
Cache->maxListSize = displayListSize;
// Check if memory allocation succeeded
if ((Cache->verts[0]==NULL) || (Cache->verts[1]==NULL) || (Cache->Models==NULL) || (Cache->lut==NULL) || (Cache->List==NULL))
{
DestroyModelCache(Cache);
return ErrorLog("Insufficient memory for model cache.");
}
// Clear LUT (MUST be done here because ClearModelCache() won't do it for dynamic models)
for (i = 0; i < numLUTEntries; i++)
Cache->lut[i] = -1;
// All good!
return OKAY;
}
void CRender3D::DestroyModelCache(ModelCache *Cache)
{
for (int i = 0; i < 2; i++)
{
if (Cache->verts[i] != NULL)
delete [] Cache->verts[i];
}
if (Cache->Models != NULL)
delete [] Cache->Models;
if (Cache->lut != NULL)
delete [] Cache->lut;
if (Cache->List != NULL)
delete [] Cache->List;
memset(Cache, 0, sizeof(ModelCache));
}