Supermodel/Src/Graphics/New3D/R3DShaderCommon.h
2023-10-14 20:05:00 +01:00

362 lines
10 KiB
C

#pragma once
// I altered this code a bit to make sure it always compiles with gl 4.1. Version 4.5 allows you to specify arrays differently.
// Ripped out most of the common code, people have been pushing changes to the shaders but we are ending up with diverging implementations
// between triangle / quad version which is less than ideal.
static const char* fragmentShaderR3DCommon = R"glsl(
#define LayerColour 0x0
#define LayerTrans0 0x1
#define LayerTrans1 0x2
vec4 ExtractColour(int type, uint value)
{
vec4 c = vec4(0.0);
if(type==0) { // T1RGB5
c.r = float((value >> 10) & 0x1Fu);
c.g = float((value >> 5 ) & 0x1Fu);
c.b = float((value ) & 0x1Fu);
c.rgb *= (1.0/31.0);
c.a = 1.0 - float((value >> 15) & 0x1u);
}
else if(type==1) { // Interleaved A4L4 (low byte)
c.rgb = vec3(float(value&0xFu));
c.a = float((value >> 4) & 0xFu);
c *= (1.0/15.0);
}
else if(type==2) {
c.a = float(value&0xFu);
c.rgb = vec3(float((value >> 4) & 0xFu));
c *= (1.0/15.0);
}
else if(type==3) {
c.rgb = vec3(float((value>>8)&0xFu));
c.a = float((value >> 12) & 0xFu);
c *= (1.0/15.0);
}
else if(type==4) {
c.a = float((value>>8)&0xFu);
c.rgb = vec3(float((value >> 12) & 0xFu));
c *= (1.0/15.0);
}
else if(type==5) {
c = vec4(float(value&0xFFu) / 255.0);
if(c.a==1.0) { c.a = 0.0; }
else { c.a = 1.0; }
}
else if(type==6) {
c = vec4(float((value>>8)&0xFFu) / 255.0);
if(c.a==1.0) { c.a = 0.0; }
else { c.a = 1.0; }
}
else if(type==7) { // RGBA4
c.r = float((value>>12)&0xFu);
c.g = float((value>> 8)&0xFu);
c.b = float((value>> 4)&0xFu);
c.a = float((value>> 0)&0xFu);
c *= (1.0/15.0);
}
else if(type==8) { // low byte, low nibble
c = vec4(float(value&0xFu) / 15.0);
if(c.a==1.0) { c.a = 0.0; }
else { c.a = 1.0; }
}
else if(type==9) { // low byte, high nibble
c = vec4(float((value>>4)&0xFu) / 15.0);
if(c.a==1.0) { c.a = 0.0; }
else { c.a = 1.0; }
}
else if(type==10) { // high byte, low nibble
c = vec4(float((value>>8)&0xFu) / 15.0);
if(c.a==1.0) { c.a = 0.0; }
else { c.a = 1.0; }
}
else if(type==11) { // high byte, high nibble
c = vec4(float((value>>12)&0xFu) / 15.0);
if(c.a==1.0) { c.a = 0.0; }
else { c.a = 1.0; }
}
return c;
}
int GetPage(int yCoord)
{
return yCoord / 1024;
}
int GetNextPage(int yCoord)
{
return (GetPage(yCoord) + 1) & 1;
}
int GetNextPageOffset(int yCoord)
{
return GetNextPage(yCoord) * 1024;
}
// wrapping tex coords would be super easy but we combined tex sheets so have to handle wrap around between sheets
// hardware testing would be useful because i don't know exactly what happens if you try to read outside the texture sheet
// wrap around is a good guess
ivec2 WrapTexCoords(ivec2 pos, ivec2 coordinate)
{
ivec2 newCoord;
newCoord.x = coordinate.x & 2047;
newCoord.y = coordinate.y;
int page = GetPage(pos.y);
newCoord.y -= (page * 1024); // remove page
newCoord.y &= 1023; // wrap around in the same sheet
newCoord.y += (page * 1024); // add page back
return newCoord;
}
ivec2 GetTextureSize(int level, ivec2 size)
{
int mipDivisor = 1 << level;
return size / mipDivisor;
}
ivec2 GetTexturePosition(int level, ivec2 pos)
{
const int mipXBase[] = int[](0, 1024, 1536, 1792, 1920, 1984, 2016, 2032, 2040, 2044, 2046, 2047);
const int mipYBase[] = int[](0, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1023);
int mipDivisor = 1 << level;
int page = pos.y / 1024;
pos.y -= (page * 1024); // remove page from tex y
ivec2 retPos;
retPos.x = mipXBase[level] + (pos.x / mipDivisor);
retPos.y = mipYBase[level] + (pos.y / mipDivisor);
retPos.y += (page * 1024); // add page back to tex y
return retPos;
}
ivec2 GetMicroTexturePos(int id)
{
const int xCoords[8] = int[](0, 0, 128, 128, 0, 0, 128, 128);
const int yCoords[8] = int[](0, 128, 0, 128, 256, 384, 256, 384);
return ivec2(xCoords[id],yCoords[id]);
}
float mip_map_level(in vec2 texture_coordinate) // in texel units
{
vec2 dx_vtc = dFdx(texture_coordinate);
vec2 dy_vtc = dFdy(texture_coordinate);
float delta_max_sqr = max(dot(dx_vtc, dx_vtc), dot(dy_vtc, dy_vtc));
float mml = 0.5 * log2(delta_max_sqr);
return max( 0.0, mml );
}
float LinearTexLocations(int wrapMode, float size, float u, out float u0, out float u1)
{
float texelSize = 1.0 / size;
float halfTexelSize = 0.5 / size;
if(wrapMode==0) { // repeat
u = u * size - 0.5;
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
u0 = fract(u0);
u1 = u0 + texelSize;
u1 = fract(u1);
return fract(u); // return weight
}
else if(wrapMode==1) { // repeat + clamp
u = fract(u); // must force into 0-1 to start
u = u * size - 0.5;
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
u1 = u0 + texelSize;
if(u0 < 0.0) u0 = 0.0;
if(u1 >= 1.0) u1 = 1.0 - halfTexelSize;
return fract(u); // return weight
}
else { // mirror + mirror clamp - both are the same since the edge pixels are repeated anyway
float odd = floor(mod(u, 2.0)); // odd values are mirrored
if(odd > 0.0) {
u = 1.0 - fract(u);
}
else {
u = fract(u);
}
u = u * size - 0.5;
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
u1 = u0 + texelSize;
if(u0 < 0.0) u0 = 0.0;
if(u1 >= 1.0) u1 = 1.0 - halfTexelSize;
return fract(u); // return weight
}
}
vec4 texBiLinear(usampler2D texSampler, ivec2 wrapMode, vec2 texSize, ivec2 texPos, vec2 texCoord)
{
float tx[2], ty[2];
float a = LinearTexLocations(wrapMode.s, texSize.x, texCoord.x, tx[0], tx[1]);
float b = LinearTexLocations(wrapMode.t, texSize.y, texCoord.y, ty[0], ty[1]);
vec4 p0q0 = ExtractColour(baseTexType,texelFetch(texSampler, WrapTexCoords(texPos,ivec2(vec2(tx[0],ty[0]) * texSize + texPos)), 0).r);
vec4 p1q0 = ExtractColour(baseTexType,texelFetch(texSampler, WrapTexCoords(texPos,ivec2(vec2(tx[1],ty[0]) * texSize + texPos)), 0).r);
vec4 p0q1 = ExtractColour(baseTexType,texelFetch(texSampler, WrapTexCoords(texPos,ivec2(vec2(tx[0],ty[1]) * texSize + texPos)), 0).r);
vec4 p1q1 = ExtractColour(baseTexType,texelFetch(texSampler, WrapTexCoords(texPos,ivec2(vec2(tx[1],ty[1]) * texSize + texPos)), 0).r);
if(alphaTest) {
if(p0q0.a > p1q0.a) { p1q0.rgb = p0q0.rgb; }
if(p0q0.a > p0q1.a) { p0q1.rgb = p0q0.rgb; }
if(p1q0.a > p0q0.a) { p0q0.rgb = p1q0.rgb; }
if(p1q0.a > p1q1.a) { p1q1.rgb = p1q0.rgb; }
if(p0q1.a > p0q0.a) { p0q0.rgb = p0q1.rgb; }
if(p0q1.a > p1q1.a) { p1q1.rgb = p0q1.rgb; }
if(p1q1.a > p0q1.a) { p0q1.rgb = p1q1.rgb; }
if(p1q1.a > p1q0.a) { p1q0.rgb = p1q1.rgb; }
}
// Interpolation in X direction.
vec4 pInterp_q0 = mix( p0q0, p1q0, a ); // Interpolates top row in X direction.
vec4 pInterp_q1 = mix( p0q1, p1q1, a ); // Interpolates bottom row in X direction.
return mix( pInterp_q0, pInterp_q1, b ); // Interpolate in Y direction.
}
vec4 textureR3D(usampler2D texSampler, ivec2 wrapMode, ivec2 texSize, ivec2 texPos, vec2 texCoord)
{
float numLevels = floor(log2(min(float(texSize.x), float(texSize.y)))); // r3d only generates down to 1:1 for square textures, otherwise its the min dimension
float fLevel = min(mip_map_level(texCoord * vec2(texSize)), numLevels);
if(alphaTest) fLevel *= 0.5;
else fLevel *= 0.8;
int iLevel = int(fLevel);
ivec2 texPos0 = GetTexturePosition(iLevel,texPos);
ivec2 texPos1 = GetTexturePosition(iLevel+1,texPos);
ivec2 texSize0 = GetTextureSize(iLevel, texSize);
ivec2 texSize1 = GetTextureSize(iLevel+1, texSize);
vec4 texLevel0 = texBiLinear(texSampler, wrapMode, vec2(texSize0), texPos0, texCoord);
vec4 texLevel1 = texBiLinear(texSampler, wrapMode, vec2(texSize1), texPos1, texCoord);
return mix(texLevel0, texLevel1, fract(fLevel)); // linear blend between our mipmap levels
}
vec4 GetTextureValue()
{
vec4 tex1Data = textureR3D(tex1, textureWrapMode, ivec2(baseTexInfo.zw), ivec2(baseTexInfo.xy), fsTexCoord);
if(textureInverted) {
tex1Data.rgb = vec3(1.0) - vec3(tex1Data.rgb);
}
if (microTexture) {
vec2 scale = (vec2(baseTexInfo.zw) / 128.0) * microTextureScale;
ivec2 pos = GetMicroTexturePos(microTextureID);
// add page offset to microtexture position
pos.y += GetNextPageOffset(baseTexInfo.y);
vec4 tex2Data = textureR3D(tex1, ivec2(0), ivec2(128), pos, fsTexCoord * scale);
float lod = mip_map_level(fsTexCoord * scale * vec2(128.0));
float blendFactor = max(lod - 1.5, 0.0); // bias -1.5
blendFactor = min(blendFactor, 1.0); // clamp to max value 1
blendFactor = (blendFactor + 1.0) / 2.0; // 0.5 - 1 range
tex1Data = mix(tex2Data, tex1Data, blendFactor);
}
if (alphaTest) {
if (tex1Data.a < (32.0/255.0)) {
discard;
}
}
if(textureAlpha) {
if(discardAlpha) { // opaque 1st pass
if (tex1Data.a < 1.0) {
discard;
}
}
else { // transparent 2nd pass
if ((tex1Data.a * fsColor.a) >= 1.0) {
discard;
}
}
}
if (textureAlpha == false) {
tex1Data.a = 1.0;
}
return tex1Data;
}
void Step15Luminous(inout vec4 colour)
{
// luminous polys seem to behave very differently on step 1.5 hardware
// when fixed shading is enabled the colour is modulated by the vp ambient + fixed shade value
// when disabled it appears to be multiplied by 1.5, presumably to allow a higher range
if(hardwareStep==0x15) {
if(!lightEnabled && textureEnabled) {
if(fixedShading) {
colour.rgb *= 1.0 + fsFixedShade + lighting[1].y;
}
else {
colour.rgb *= 1.5;
}
}
}
}
float CalcFog()
{
float z = -fsViewVertex.z;
float fog = fogIntensity * clamp(fogStart + z * fogDensity, 0.0, 1.0);
return fog;
}
void WriteOutputs(vec4 colour, int layer)
{
vec4 blank = vec4(0.0);
if(layer==LayerColour) {
out0 = colour;
out1 = blank;
out2 = blank;
}
else if(layer==LayerTrans0) {
out0 = blank;
out1 = colour;
out2 = blank;
}
else if(layer==LayerTrans1) {
out0 = blank;
out1 = blank;
out2 = colour;
}
}
)glsl";