Supermodel/Src/CPU/PowerPC/ppc.cpp
2022-08-09 20:37:42 -07:00

1175 lines
31 KiB
C++

/**
** Supermodel
** A Sega Model 3 Arcade Emulator.
** Copyright 2011 Bart Trzynadlowski, Nik Henson
**
** This file is part of Supermodel.
**
** Supermodel is free software: you can redistribute it and/or modify it under
** the terms of the GNU General Public License as published by the Free
** Software Foundation, either version 3 of the License, or (at your option)
** any later version.
**
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
** more details.
**
** You should have received a copy of the GNU General Public License along
** with Supermodel. If not, see <http://www.gnu.org/licenses/>.
**/
/*
* ppc.cpp
*
* PowerPC emulator main module. Written by Ville Linde for the original
* Supermodel project.
*/
/* IBM/Motorola PowerPC 4xx/6xx Emulator */
#include "ppc.h"
#include <cstring> // memset()
#include "Supermodel.h"
#include "CPU/Bus.h"
// Typedefs that Supermodel no longer provides
typedef unsigned int UINT;
// Model 3 context provides read/write handlers
static class IBus *Bus = NULL; // pointer to Model 3 bus object (for access handlers)
#ifdef SUPERMODEL_DEBUGGER
// Pointer to current PPC debugger (if any)
static class Debugger::CPPCDebug *PPCDebug = NULL;
#endif
void ppc603_exception(int exception);
static void ppc603_check_interrupts(void);
#define RD ((op >> 21) & 0x1F)
#define RT ((op >> 21) & 0x1f)
#define RS ((op >> 21) & 0x1f)
#define RA ((op >> 16) & 0x1f)
#define RB ((op >> 11) & 0x1f)
#define RC ((op >> 6) & 0x1f)
#define MB ((op >> 6) & 0x1f)
#define ME ((op >> 1) & 0x1f)
#define SH ((op >> 11) & 0x1f)
#define BO ((op >> 21) & 0x1f)
#define BI ((op >> 16) & 0x1f)
#define CRFD ((op >> 23) & 0x7)
#define CRFA ((op >> 18) & 0x7)
#define FXM ((op >> 12) & 0xff)
#define SPR (((op >> 16) & 0x1f) | ((op >> 6) & 0x3e0))
#define SIMM16 (INT32)(INT16)(op & 0xffff)
#define UIMM16 (UINT32)(op & 0xffff)
#define RCBIT (op & 0x1)
#define OEBIT (op & 0x400)
#define AABIT (op & 0x2)
#define LKBIT (op & 0x1)
#define REG(x) (ppc.r[x])
#define LR (ppc.lr)
#define CTR (ppc.ctr)
#define XER (ppc.xer)
#define CR(x) (ppc.cr[x])
#define MSR (ppc.msr)
#define SRR0 (ppc.srr0)
#define SRR1 (ppc.srr1)
#define SRR2 (ppc.srr2)
#define SRR3 (ppc.srr3)
#define EVPR (ppc.evpr)
#define EXIER (ppc.exier)
#define EXISR (ppc.exisr)
#define DEC (ppc.dec)
// Stuff added for the 6xx
#define FPR(x) (ppc.fpr[x])
#define FM ((op >> 17) & 0xFF)
#define SPRF (((op >> 6) & 0x3E0) | ((op >> 16) & 0x1F))
#define CHECK_SUPERVISOR() \
if((ppc.msr & 0x4000) != 0){ \
}
#define CHECK_FPU_AVAILABLE() \
if((ppc.msr & 0x2000) == 0){ \
}
static UINT32 ppc_field_xlat[256];
#define FPSCR_FX 0x80000000
#define FPSCR_FEX 0x40000000
#define FPSCR_VX 0x20000000
#define FPSCR_OX 0x10000000
#define FPSCR_UX 0x08000000
#define FPSCR_ZX 0x04000000
#define FPSCR_XX 0x02000000
#define BITMASK_0(n) (UINT32)(((UINT64)1 << n) - 1)
#define CRBIT(x) ((ppc.cr[x / 4] & (1 << (3 - (x % 4)))) ? 1 : 0)
#define _BIT(n) (1 << (n))
#define GET_ROTATE_MASK(mb,me) (ppc_rotate_mask[mb][me])
#define ADD_CA(r,a,b) ((UINT32)r < (UINT32)a)
#define SUB_CA(r,a,b) (!((UINT32)a < (UINT32)b))
#define ADD_OV(r,a,b) ((~((a) ^ (b)) & ((a) ^ (r))) & 0x80000000)
#define SUB_OV(r,a,b) (( ((a) ^ (b)) & ((a) ^ (r))) & 0x80000000)
#define XER_SO 0x80000000
#define XER_OV 0x40000000
#define XER_CA 0x20000000
#define MSR_POW 0x00040000 /* Power Management Enable */
#define MSR_WE 0x00040000
#define MSR_CE 0x00020000
#define MSR_ILE 0x00010000 /* Interrupt Little Endian Mode */
#define MSR_EE 0x00008000 /* External Interrupt Enable */
#define MSR_PR 0x00004000 /* Problem State */
#define MSR_FP 0x00002000 /* Floating Point Available */
#define MSR_ME 0x00001000 /* Machine Check Enable */
#define MSR_FE0 0x00000800
#define MSR_SE 0x00000400 /* Single Step Trace Enable */
#define MSR_BE 0x00000200 /* Branch Trace Enable */
#define MSR_DE 0x00000200
#define MSR_FE1 0x00000100
#define MSR_IP 0x00000040 /* Interrupt Prefix */
#define MSR_IR 0x00000020 /* Instruction Relocate */
#define MSR_DR 0x00000010 /* Data Relocate */
#define MSR_PE 0x00000008
#define MSR_PX 0x00000004
#define MSR_RI 0x00000002 /* Recoverable Interrupt Enable */
#define MSR_LE 0x00000001
#define TSR_ENW 0x80000000
#define TSR_WIS 0x40000000
#define BYTE_REVERSE16(x) (((x >> 8) | (x << 8)) & 0xFFFF)
#define BYTE_REVERSE32(x) ((x >> 24) | ((x << 8) & 0x00FF0000) | ((x >> 8) & 0x0000FF00) | (x << 24))
typedef union {
UINT64 id;
double fd;
} FPR;
typedef union {
UINT32 i;
float f;
} FPR32;
typedef struct {
UINT32 u;
UINT32 l;
} BATENT;
typedef struct {
bool fatalError; // if true, halt PowerPC until hard reset
UINT32 r[32];
UINT32 pc;
UINT32 npc;
UINT32 *op;
UINT32 lr;
UINT32 ctr;
UINT32 xer;
UINT32 msr;
UINT8 cr[8];
UINT32 pvr;
UINT32 srr0;
UINT32 srr1;
UINT32 srr2;
UINT32 srr3;
UINT32 hid0;
UINT32 hid1;
UINT32 hid2;
UINT32 sdr1;
UINT32 sprg[4];
UINT32 dsisr;
UINT32 dar;
UINT32 ear;
UINT32 dmiss;
UINT32 dcmp;
UINT32 hash1;
UINT32 hash2;
UINT32 imiss;
UINT32 icmp;
UINT32 rpa;
BATENT ibat[4];
BATENT dbat[4];
UINT32 evpr;
UINT32 exier;
UINT32 exisr;
UINT32 bear;
UINT32 besr;
UINT32 iocr;
UINT32 br[8];
UINT32 iabr;
UINT32 esr;
UINT32 iccr;
UINT32 dccr;
UINT32 pit;
UINT32 pit_counter;
UINT32 pit_int_enable;
UINT32 tsr;
UINT32 dbsr;
UINT32 sgr;
UINT32 pid;
int reserved;
UINT32 reserved_address;
int interrupt_pending;
int external_int;
UINT64 tb; /* 56-bit timebase register */
int (*irq_callback)(int irqline);
PPC_FETCH_REGION cur_fetch;
PPC_FETCH_REGION * fetch;
// STUFF added for the 6xx series
UINT32 dec;
UINT32 fpscr;
FPR fpr[32];
UINT32 sr[16];
// Timing related
int timer_ratio;
UINT32 timer_frac;
int tb_base_icount;
int dec_base_icount;
int dec_trigger_cycle;
// Cycle related
UINT64 total_cycles;
int icount;
int cur_cycles;
int bus_freq_multiplier;
int cycles_per_second;
#if HAS_PPC603
int is603;
#endif
#if HAS_PPC602
int is602;
#endif
} PPC_REGS;
typedef struct {
int code;
int subcode;
void (* handler)(UINT32);
} PPC_OPCODE;
static PPC_REGS ppc;
static UINT32 ppc_rotate_mask[32][32];
static void ppc_change_pc(UINT32 newpc)
{
if (ppc.cur_fetch.start <= newpc && newpc <= ppc.cur_fetch.end)
{
ppc.op = &ppc.cur_fetch.ptr[(newpc-ppc.cur_fetch.start)/4];
// ppc.op = (UINT32 *)((void *)ppc.cur_fetch.ptr + (UINT32)(newpc - ppc.cur_fetch.start));
return;
}
for(UINT i = 0; ppc.fetch[i].ptr != NULL; i++)
{
if (ppc.fetch[i].start <= newpc && newpc <= ppc.fetch[i].end)
{
ppc.cur_fetch.start = ppc.fetch[i].start;
ppc.cur_fetch.end = ppc.fetch[i].end;
ppc.cur_fetch.ptr = ppc.fetch[i].ptr;
// ppc.op = (UINT32 *)((UINT32)ppc.cur_fetch.ptr + (UINT32)(newpc - ppc.cur_fetch.start));
ppc.op = &ppc.cur_fetch.ptr[(newpc-ppc.cur_fetch.start)/4];
return;
}
}
DebugLog("Invalid PC %08X, previous PC %08X\n", newpc, ppc.pc);
ErrorLog("PowerPC is out of bounds. Halting emulation until reset.");
ppc.fatalError = true;
}
static inline UINT8 READ8(UINT32 address)
{
return Bus->Read8(address);
}
static inline UINT16 READ16(UINT32 address)
{
return Bus->Read16(address);
}
static inline UINT32 READ32(UINT32 address)
{
return Bus->Read32(address);
}
static inline UINT64 READ64(UINT32 address)
{
return Bus->Read64(address);
}
static inline void WRITE8(UINT32 address, UINT8 data)
{
Bus->Write8(address,data);
}
static inline void WRITE16(UINT32 address, UINT16 data)
{
Bus->Write16(address,data);
}
static inline void WRITE32(UINT32 address, UINT32 data)
{
Bus->Write32(address,data);
}
static inline void WRITE64(UINT32 address, UINT64 data)
{
Bus->Write64(address,data);
}
/*********************************************************************/
static inline void SET_CR0(INT32 rd)
{
if( rd < 0 ) {
CR(0) = 0x8;
} else if( rd > 0 ) {
CR(0) = 0x4;
} else {
CR(0) = 0x2;
}
if( XER & XER_SO )
CR(0) |= 0x1;
}
static inline void SET_CR1(void)
{
CR(1) = (ppc.fpscr >> 28) & 0xf;
}
static inline void SET_ADD_OV(UINT32 rd, UINT32 ra, UINT32 rb)
{
if( ADD_OV(rd, ra, rb) )
XER |= XER_SO | XER_OV;
else
XER &= ~XER_OV;
}
static inline void SET_SUB_OV(UINT32 rd, UINT32 ra, UINT32 rb)
{
if( SUB_OV(rd, ra, rb) )
XER |= XER_SO | XER_OV;
else
XER &= ~XER_OV;
}
static inline void SET_ADD_CA(UINT32 rd, UINT32 ra, UINT32 rb)
{
if( ADD_CA(rd, ra, rb) )
XER |= XER_CA;
else
XER &= ~XER_CA;
}
static inline void SET_SUB_CA(UINT32 rd, UINT32 ra, UINT32 rb)
{
if( SUB_CA(rd, ra, rb) )
XER |= XER_CA;
else
XER &= ~XER_CA;
}
static inline UINT32 check_condition_code(UINT32 bo, UINT32 bi)
{
UINT32 bo0 = (bo & 0x10) ? 1 : 0;
UINT32 bo1 = (bo & 0x08) ? 1 : 0;
UINT32 bo2 = (bo & 0x04) ? 1 : 0;
UINT32 bo3 = (bo & 0x02) ? 1 : 0;
if( bo2 == 0 )
--CTR;
UINT32 ctr_ok = bo2 | ((CTR != 0) ^ bo3);
UINT32 condition_ok = bo0 | (CRBIT(bi) ^ (bo1 ^ 0x1));
return ctr_ok & condition_ok;
}
static inline UINT64 ppc_read_timebase(void)
{
int cycles = ppc.tb_base_icount - ppc.icount;
// Timebase is incremented according to timer ratio, so adjust value accordingly
return ppc.tb + (cycles / ppc.timer_ratio);
}
static inline void ppc_write_timebase_l(UINT32 tbl)
{
UINT64 tb = ppc_read_timebase();
ppc.tb_base_icount = ppc.icount + ((ppc.tb_base_icount - ppc.icount) % ppc.timer_ratio);
ppc.tb = (tb&~0xffffffff)|tbl;
}
static inline void ppc_write_timebase_h(UINT32 tbh)
{
UINT64 tb = ppc_read_timebase();
ppc.tb_base_icount = ppc.icount + ((ppc.tb_base_icount - ppc.icount) % ppc.timer_ratio);
ppc.tb = (tb&0xffffffff)|((UINT64)(tbh) << 32);
}
static inline UINT32 read_decrementer(void)
{
int cycles = ppc.dec_base_icount - ppc.icount;
// Decrementer is decremented at same rate as timebase, so adjust value accordingly
return DEC - (cycles / ppc.timer_ratio);
}
static inline void write_decrementer(UINT32 value)
{
if (((value&0x80000000) && !(read_decrementer()&0x80000000)))
{
/* trigger interrupt */
ppc.interrupt_pending |= 0x2;
ppc603_check_interrupts();
}
ppc.dec_base_icount = ppc.icount + ((ppc.dec_base_icount - ppc.icount) % ppc.timer_ratio);
DEC = value;
// Check if decrementer exception occurs during execution (exception occurs after decrementer
// has passed through zero)
if ((UINT32)(ppc.dec_base_icount / ppc.timer_ratio) > DEC)
ppc.dec_trigger_cycle = ppc.dec_base_icount - ((1 + DEC) * ppc.timer_ratio);
else
ppc.dec_trigger_cycle = 0x7fffffff;
}
/*********************************************************************/
static inline void ppc_set_spr(int spr, UINT32 value)
{
switch (spr)
{
case SPR_LR: LR = value; return;
case SPR_CTR: CTR = value; return;
case SPR_XER: XER = value; return;
case SPR_SRR0: ppc.srr0 = value; return;
case SPR_SRR1: ppc.srr1 = value; return;
case SPR_SPRG0: ppc.sprg[0] = value; return;
case SPR_SPRG1: ppc.sprg[1] = value; return;
case SPR_SPRG2: ppc.sprg[2] = value; return;
case SPR_SPRG3: ppc.sprg[3] = value; return;
case SPR_PVR: return;
case SPR603E_DEC:
write_decrementer(value);
return;
case SPR603E_TBL_W:
case SPR603E_TBL_R: // special 603e case
ppc_write_timebase_l(value);
return;
case SPR603E_TBU_R:
case SPR603E_TBU_W: // special 603e case
ppc_write_timebase_h(value);
return;
case SPR603E_HID0: ppc.hid0 = value; return;
case SPR603E_HID1: ppc.hid1 = value; return;
case SPR603E_HID2: ppc.hid2 = value; return;
case SPR603E_DSISR: ppc.dsisr = value; return;
case SPR603E_DAR: ppc.dar = value; return;
case SPR603E_EAR: ppc.ear = value; return;
case SPR603E_DMISS: ppc.dmiss = value; return;
case SPR603E_DCMP: ppc.dcmp = value; return;
case SPR603E_HASH1: ppc.hash1 = value; return;
case SPR603E_HASH2: ppc.hash2 = value; return;
case SPR603E_IMISS: ppc.imiss = value; return;
case SPR603E_ICMP: ppc.icmp = value; return;
case SPR603E_RPA: ppc.rpa = value; return;
case SPR603E_IBAT0L: ppc.ibat[0].l = value; return;
case SPR603E_IBAT0U: ppc.ibat[0].u = value; return;
case SPR603E_IBAT1L: ppc.ibat[1].l = value; return;
case SPR603E_IBAT1U: ppc.ibat[1].u = value; return;
case SPR603E_IBAT2L: ppc.ibat[2].l = value; return;
case SPR603E_IBAT2U: ppc.ibat[2].u = value; return;
case SPR603E_IBAT3L: ppc.ibat[3].l = value; return;
case SPR603E_IBAT3U: ppc.ibat[3].u = value; return;
case SPR603E_DBAT0L: ppc.dbat[0].l = value; return;
case SPR603E_DBAT0U: ppc.dbat[0].u = value; return;
case SPR603E_DBAT1L: ppc.dbat[1].l = value; return;
case SPR603E_DBAT1U: ppc.dbat[1].u = value; return;
case SPR603E_DBAT2L: ppc.dbat[2].l = value; return;
case SPR603E_DBAT2U: ppc.dbat[2].u = value; return;
case SPR603E_DBAT3L: ppc.dbat[3].l = value; return;
case SPR603E_DBAT3U: ppc.dbat[3].u = value; return;
case SPR603E_SDR1:
ppc.sdr1 = value;
return;
case SPR603E_IABR: ppc.iabr = value; return;
}
ErrorLog("PowerPC wrote to an invalid register. Halting emulation until reset.");
DebugLog("ppc: set_spr: unknown spr %d (%03X) !\n", spr, spr);
ppc.fatalError = true;
}
static inline UINT32 ppc_get_spr(int spr)
{
switch(spr)
{
case SPR_LR: return LR;
case SPR_CTR: return CTR;
case SPR_XER: return XER;
case SPR_SRR0: return ppc.srr0;
case SPR_SRR1: return ppc.srr1;
case SPR_SPRG0: return ppc.sprg[0];
case SPR_SPRG1: return ppc.sprg[1];
case SPR_SPRG2: return ppc.sprg[2];
case SPR_SPRG3: return ppc.sprg[3];
case SPR_PVR: return ppc.pvr;
case SPR603E_TBL_R:
DebugLog("ppc: get_spr: TBL_R\n");
break;
case SPR603E_TBU_R:
DebugLog("ppc: get_spr: TBU_R\n");
break;
case SPR603E_TBL_W: return (UINT32)(ppc_read_timebase());
case SPR603E_TBU_W: return (UINT32)(ppc_read_timebase() >> 32);
case SPR603E_HID0: return ppc.hid0;
case SPR603E_HID1: return ppc.hid1;
case SPR603E_HID2: return ppc.hid2;
case SPR603E_DEC: return read_decrementer();
case SPR603E_SDR1: return ppc.sdr1;
case SPR603E_DSISR: return ppc.dsisr;
case SPR603E_DAR: return ppc.dar;
case SPR603E_EAR: return ppc.ear;
case SPR603E_DMISS: return ppc.dmiss;
case SPR603E_DCMP: return ppc.dcmp;
case SPR603E_HASH1: return ppc.hash1;
case SPR603E_HASH2: return ppc.hash2;
case SPR603E_IMISS: return ppc.imiss;
case SPR603E_ICMP: return ppc.icmp;
case SPR603E_RPA: return ppc.rpa;
case SPR603E_IBAT0L: return ppc.ibat[0].l;
case SPR603E_IBAT0U: return ppc.ibat[0].u;
case SPR603E_IBAT1L: return ppc.ibat[1].l;
case SPR603E_IBAT1U: return ppc.ibat[1].u;
case SPR603E_IBAT2L: return ppc.ibat[2].l;
case SPR603E_IBAT2U: return ppc.ibat[2].u;
case SPR603E_IBAT3L: return ppc.ibat[3].l;
case SPR603E_IBAT3U: return ppc.ibat[3].u;
case SPR603E_DBAT0L: return ppc.dbat[0].l;
case SPR603E_DBAT0U: return ppc.dbat[0].u;
case SPR603E_DBAT1L: return ppc.dbat[1].l;
case SPR603E_DBAT1U: return ppc.dbat[1].u;
case SPR603E_DBAT2L: return ppc.dbat[2].l;
case SPR603E_DBAT2U: return ppc.dbat[2].u;
case SPR603E_DBAT3L: return ppc.dbat[3].l;
case SPR603E_DBAT3U: return ppc.dbat[3].u;
}
ErrorLog("PowerPC read from an invalid register. Halting emulation until reset.");
DebugLog("ppc: get_spr: unknown spr %d (%03X) !\n", spr, spr);
ppc.fatalError = true;
return 0;
}
static inline void ppc_set_msr(UINT32 value)
{
if( value & (MSR_ILE | MSR_LE) )
{
ErrorLog("PowerPC entered an unemulated mode. Halting emulation until reset.");
DebugLog("ppc: set_msr: little_endian mode not supported !\n");
ppc.fatalError = true;
}
MSR = value;
ppc603_check_interrupts();
}
static inline UINT32 ppc_get_msr(void)
{
return MSR;
}
static inline void ppc_set_cr(UINT32 value)
{
CR(0) = (value >> 28) & 0xf;
CR(1) = (value >> 24) & 0xf;
CR(2) = (value >> 20) & 0xf;
CR(3) = (value >> 16) & 0xf;
CR(4) = (value >> 12) & 0xf;
CR(5) = (value >> 8) & 0xf;
CR(6) = (value >> 4) & 0xf;
CR(7) = (value >> 0) & 0xf;
}
static inline UINT32 ppc_get_cr(void)
{
return CR(0) << 28 | CR(1) << 24 | CR(2) << 20 | CR(3) << 16 | CR(4) << 12 | CR(5) << 8 | CR(6) << 4 | CR(7);
}
/***********************************************************************/
static void (* optable19[1024])(UINT32);
static void (* optable31[1024])(UINT32);
static void (* optable59[1024])(UINT32);
static void (* optable63[1024])(UINT32);
static void (* optable[64])(UINT32);
#include "ppc603.c"
/********************************************************************/
#include "ppc_ops.c"
#include "ppc_ops.h"
/* Initialization and shutdown */
void ppc_base_init(void)
{
int i,j;
memset(&ppc, 0, sizeof(ppc));
for( i=0; i < 64; i++ ) {
optable[i] = ppc_invalid;
}
for( i=0; i < 1024; i++ ) {
optable19[i] = ppc_invalid;
optable31[i] = ppc_invalid;
optable59[i] = ppc_invalid;
optable63[i] = ppc_invalid;
}
/* Fill the opcode tables */
for( i=0; i < (sizeof(ppc_opcode_common) / sizeof(PPC_OPCODE)); i++ ) {
switch(ppc_opcode_common[i].code)
{
case 19:
optable19[ppc_opcode_common[i].subcode] = ppc_opcode_common[i].handler;
break;
case 31:
optable31[ppc_opcode_common[i].subcode] = ppc_opcode_common[i].handler;
break;
case 59:
case 63:
break;
default:
optable[ppc_opcode_common[i].code] = ppc_opcode_common[i].handler;
}
}
/* Calculate rotate mask table */
for( i=0; i < 32; i++ ) {
for( j=0; j < 32; j++ ) {
UINT32 mask;
int mb = i;
int me = j;
mask = ((UINT32)0xFFFFFFFF >> mb) ^ ((me >= 31) ? 0 : ((UINT32)0xFFFFFFFF >> (me + 1)));
if( mb > me )
mask = ~mask;
ppc_rotate_mask[i][j] = mask;
}
}
}
void ppc_init(const PPC_CONFIG *config)
{
int pll_config = 0;
float multiplier;
int i ;
ppc_base_init() ;
optable[48] = ppc_lfs;
optable[49] = ppc_lfsu;
optable[50] = ppc_lfd;
optable[51] = ppc_lfdu;
optable[52] = ppc_stfs;
optable[53] = ppc_stfsu;
optable[54] = ppc_stfd;
optable[55] = ppc_stfdu;
optable31[631] = ppc_lfdux;
optable31[599] = ppc_lfdx;
optable31[567] = ppc_lfsux;
optable31[535] = ppc_lfsx;
optable31[595] = ppc_mfsr;
optable31[659] = ppc_mfsrin;
optable31[371] = ppc_mftb;
optable31[210] = ppc_mtsr;
optable31[242] = ppc_mtsrin;
optable31[758] = ppc_dcba;
optable31[759] = ppc_stfdux;
optable31[727] = ppc_stfdx;
optable31[983] = ppc_stfiwx;
optable31[695] = ppc_stfsux;
optable31[663] = ppc_stfsx;
optable31[370] = ppc_tlbia;
optable31[306] = ppc_tlbie;
optable31[566] = ppc_tlbsync;
optable31[310] = ppc_eciwx;
optable31[438] = ppc_ecowx;
optable63[264] = ppc_fabsx;
optable63[21] = ppc_faddx;
optable63[32] = ppc_fcmpo;
optable63[0] = ppc_fcmpu;
optable63[14] = ppc_fctiwx;
optable63[15] = ppc_fctiwzx;
optable63[18] = ppc_fdivx;
optable63[72] = ppc_fmrx;
optable63[136] = ppc_fnabsx;
optable63[40] = ppc_fnegx;
optable63[12] = ppc_frspx;
optable63[26] = ppc_frsqrtex;
optable63[22] = ppc_fsqrtx;
optable63[20] = ppc_fsubx;
optable63[583] = ppc_mffsx;
optable63[70] = ppc_mtfsb0x;
optable63[38] = ppc_mtfsb1x;
optable63[711] = ppc_mtfsfx;
optable63[134] = ppc_mtfsfix;
optable63[64] = ppc_mcrfs;
optable59[21] = ppc_faddsx;
optable59[18] = ppc_fdivsx;
optable59[24] = ppc_fresx;
optable59[22] = ppc_fsqrtsx;
optable59[20] = ppc_fsubsx;
for(i = 0; i < 32; i++)
{
optable63[i * 32 | 29] = ppc_fmaddx;
optable63[i * 32 | 28] = ppc_fmsubx;
optable63[i * 32 | 25] = ppc_fmulx;
optable63[i * 32 | 31] = ppc_fnmaddx;
optable63[i * 32 | 30] = ppc_fnmsubx;
optable63[i * 32 | 23] = ppc_fselx;
optable59[i * 32 | 29] = ppc_fmaddsx;
optable59[i * 32 | 28] = ppc_fmsubsx;
optable59[i * 32 | 25] = ppc_fmulsx;
optable59[i * 32 | 31] = ppc_fnmaddsx;
optable59[i * 32 | 30] = ppc_fnmsubsx;
}
for(i = 0; i < 256; i++)
{
ppc_field_xlat[i] =
((i & 0x80) ? 0xF0000000 : 0) |
((i & 0x40) ? 0x0F000000 : 0) |
((i & 0x20) ? 0x00F00000 : 0) |
((i & 0x10) ? 0x000F0000 : 0) |
((i & 0x08) ? 0x0000F000 : 0) |
((i & 0x04) ? 0x00000F00 : 0) |
((i & 0x02) ? 0x000000F0 : 0) |
((i & 0x01) ? 0x0000000F : 0);
}
ppc.pvr = config->pvr;
multiplier = (float)((config->bus_frequency_multiplier >> 4) & 0xf) +
(float)(config->bus_frequency_multiplier & 0xf) / 10.0f;
ppc.bus_freq_multiplier = (int)(multiplier * 2);
// tb and dec are incremented every four bus cycles, so calculate default timer ratio
ppc.timer_ratio = 2 * ppc.bus_freq_multiplier;
switch (config->bus_frequency)
{
case BUS_FREQUENCY_16MHZ: ppc.cycles_per_second = (int)(multiplier * 16000000); break;
case BUS_FREQUENCY_20MHZ: ppc.cycles_per_second = (int)(multiplier * 20000000); break;
case BUS_FREQUENCY_25MHZ: ppc.cycles_per_second = (int)(multiplier * 25000000); break;
case BUS_FREQUENCY_33MHZ: ppc.cycles_per_second = (int)(multiplier * 33000000); break;
case BUS_FREQUENCY_40MHZ: ppc.cycles_per_second = (int)(multiplier * 40000000); break;
case BUS_FREQUENCY_50MHZ: ppc.cycles_per_second = (int)(multiplier * 50000000); break;
case BUS_FREQUENCY_60MHZ: ppc.cycles_per_second = (int)(multiplier * 60000000); break;
case BUS_FREQUENCY_66MHZ: ppc.cycles_per_second = (int)(multiplier * 66000000); break;
case BUS_FREQUENCY_75MHZ: ppc.cycles_per_second = (int)(multiplier * 75000000); break;
}
switch(config->pvr)
{
case PPC_MODEL_603E: pll_config = mpc603e_pll_config[ppc.bus_freq_multiplier-1][config->bus_frequency]; break;
case PPC_MODEL_603EV: pll_config = mpc603ev_pll_config[ppc.bus_freq_multiplier-1][config->bus_frequency]; break;
case PPC_MODEL_603R: pll_config = mpc603r_pll_config[ppc.bus_freq_multiplier-1][config->bus_frequency]; break;
default: break;
}
if (pll_config == -1)
{
//ErrorLog("PPC: Invalid bus/multiplier combination (bus frequency = %d, multiplier = %1.1f)", config->bus_frequency, multiplier);
}
ppc.hid1 = pll_config << 28;
}
void ppc_shutdown(void)
{
}
void ppc_set_irq_line(int irqline)
{
if (irqline)
{
ppc.interrupt_pending |= 0x1;
ppc603_check_interrupts();
}
else
{
ppc.interrupt_pending &= ~0x1;
}
}
UINT32 ppc_get_pc(void)
{
return ppc.pc;
}
void ppc_set_fetch(PPC_FETCH_REGION * fetch)
{
ppc.fetch = fetch;
}
UINT64 ppc_total_cycles(void)
{
return ppc.total_cycles + (UINT64)(ppc.cur_cycles - ppc.icount);
}
int ppc_get_cycles_per_sec()
{
return ppc.cycles_per_second;
}
int ppc_get_bus_freq_multipler()
{
return ppc.bus_freq_multiplier;
}
void ppc_set_timer_ratio(int ratio)
{
ppc.timer_ratio = ratio;
}
int ppc_get_timer_ratio()
{
return ppc.timer_ratio;
}
/******************************************************************************
Supermodel Interface
******************************************************************************/
void ppc_attach_bus(IBus *BusPtr)
{
Bus = BusPtr;
}
void ppc_save_state(CBlockFile *SaveState)
{
SaveState->NewBlock("PowerPC", __FILE__);
// Cycle counting
SaveState->Write(&ppc.icount, sizeof(ppc.icount));
SaveState->Write(&ppc.cur_cycles, sizeof(ppc.cur_cycles));
SaveState->Write(&ppc.total_cycles, sizeof(ppc.total_cycles));
// Registers
SaveState->Write(ppc.r, sizeof(ppc.r));
SaveState->Write(&ppc.pc, sizeof(ppc.pc));
SaveState->Write(&ppc.npc, sizeof(ppc.npc));
SaveState->Write(&ppc.lr, sizeof(ppc.lr));
SaveState->Write(&ppc.ctr, sizeof(ppc.ctr));
SaveState->Write(&ppc.xer, sizeof(ppc.xer));
SaveState->Write(&ppc.msr, sizeof(ppc.msr));
SaveState->Write(ppc.cr, sizeof(ppc.cr));
SaveState->Write(&ppc.pvr, sizeof(ppc.pvr));
SaveState->Write(&ppc.srr0, sizeof(ppc.srr0));
SaveState->Write(&ppc.srr1, sizeof(ppc.srr1));
SaveState->Write(&ppc.srr2, sizeof(ppc.srr2));
SaveState->Write(&ppc.srr3, sizeof(ppc.srr3));
SaveState->Write(&ppc.hid0, sizeof(ppc.hid0));
SaveState->Write(&ppc.hid1, sizeof(ppc.hid1));
SaveState->Write(&ppc.hid2, sizeof(ppc.hid2));
SaveState->Write(&ppc.sdr1, sizeof(ppc.sdr1));
SaveState->Write(ppc.sprg, sizeof(ppc.sprg));
SaveState->Write(&ppc.dsisr, sizeof(ppc.dsisr));
SaveState->Write(&ppc.dar, sizeof(ppc.dar));
SaveState->Write(&ppc.ear, sizeof(ppc.ear));
SaveState->Write(&ppc.dmiss, sizeof(ppc.dmiss));
SaveState->Write(&ppc.dcmp, sizeof(ppc.dcmp));
SaveState->Write(&ppc.hash1, sizeof(ppc.hash1));
SaveState->Write(&ppc.hash2, sizeof(ppc.hash2));
SaveState->Write(&ppc.imiss, sizeof(ppc.imiss));
SaveState->Write(&ppc.icmp, sizeof(ppc.icmp));
SaveState->Write(&ppc.rpa, sizeof(ppc.rpa));
SaveState->Write(ppc.ibat, sizeof(ppc.ibat));
SaveState->Write(ppc.dbat, sizeof(ppc.dbat));
// These are probably PPC 4xx registers, but who cares, save 'em anyway!
SaveState->Write(&ppc.evpr, sizeof(ppc.evpr));
SaveState->Write(&ppc.exier, sizeof(ppc.exier));
SaveState->Write(&ppc.exisr, sizeof(ppc.exisr));
SaveState->Write(&ppc.bear, sizeof(ppc.bear));
SaveState->Write(&ppc.besr, sizeof(ppc.besr));
SaveState->Write(&ppc.iocr, sizeof(ppc.iocr));
SaveState->Write(ppc.br, sizeof(ppc.br));
SaveState->Write(&ppc.iabr, sizeof(ppc.iabr));
SaveState->Write(&ppc.esr, sizeof(ppc.esr));
SaveState->Write(&ppc.iccr, sizeof(ppc.iccr));
SaveState->Write(&ppc.dccr, sizeof(ppc.dccr));
SaveState->Write(&ppc.pit, sizeof(ppc.pit));
SaveState->Write(&ppc.pit_counter, sizeof(ppc.pit_counter));
SaveState->Write(&ppc.pit_int_enable, sizeof(ppc.pit_int_enable));
SaveState->Write(&ppc.tsr, sizeof(ppc.tsr));
SaveState->Write(&ppc.dbsr, sizeof(ppc.dbsr));
SaveState->Write(&ppc.sgr, sizeof(ppc.sgr));
SaveState->Write(&ppc.pid, sizeof(ppc.pid));
SaveState->Write(&ppc.reserved, sizeof(ppc.reserved));
SaveState->Write(&ppc.reserved_address, sizeof(ppc.reserved_address));
SaveState->Write(&ppc.external_int, sizeof(ppc.external_int));
SaveState->Write(&ppc.tb, sizeof(ppc.tb));
SaveState->Write(&ppc.dec, sizeof(ppc.dec));
SaveState->Write(&ppc.timer_frac, sizeof(ppc.timer_frac));
SaveState->Write(&ppc.fpscr, sizeof(ppc.fpscr));
SaveState->Write(ppc.fpr, sizeof(ppc.fpr));
SaveState->Write(ppc.sr, sizeof(ppc.sr));
}
void ppc_load_state(CBlockFile *SaveState)
{
if (OKAY != SaveState->FindBlock("PowerPC"))
{
ErrorLog("Unable to load PowerPC state. Save state file is corrupt.");
return;
}
// Timer and decrementer
SaveState->Read(&ppc.icount, sizeof(ppc.icount));
SaveState->Read(&ppc.cur_cycles, sizeof(ppc.cur_cycles));
SaveState->Read(&ppc.total_cycles, sizeof(ppc.total_cycles));
// Registers
SaveState->Read(ppc.r, sizeof(ppc.r));
SaveState->Read(&ppc.pc, sizeof(ppc.pc));
SaveState->Read(&ppc.npc, sizeof(ppc.npc));
ppc_change_pc(ppc.npc);
SaveState->Read(&ppc.lr, sizeof(ppc.lr));
SaveState->Read(&ppc.ctr, sizeof(ppc.ctr));
SaveState->Read(&ppc.xer, sizeof(ppc.xer));
SaveState->Read(&ppc.msr, sizeof(ppc.msr));
SaveState->Read(ppc.cr, sizeof(ppc.cr));
SaveState->Read(&ppc.pvr, sizeof(ppc.pvr));
SaveState->Read(&ppc.srr0, sizeof(ppc.srr0));
SaveState->Read(&ppc.srr1, sizeof(ppc.srr1));
SaveState->Read(&ppc.srr2, sizeof(ppc.srr2));
SaveState->Read(&ppc.srr3, sizeof(ppc.srr3));
SaveState->Read(&ppc.hid0, sizeof(ppc.hid0));
SaveState->Read(&ppc.hid1, sizeof(ppc.hid1));
SaveState->Read(&ppc.hid2, sizeof(ppc.hid2));
SaveState->Read(&ppc.sdr1, sizeof(ppc.sdr1));
SaveState->Read(ppc.sprg, sizeof(ppc.sprg));
SaveState->Read(&ppc.dsisr, sizeof(ppc.dsisr));
SaveState->Read(&ppc.dar, sizeof(ppc.dar));
SaveState->Read(&ppc.ear, sizeof(ppc.ear));
SaveState->Read(&ppc.dmiss, sizeof(ppc.dmiss));
SaveState->Read(&ppc.dcmp, sizeof(ppc.dcmp));
SaveState->Read(&ppc.hash1, sizeof(ppc.hash1));
SaveState->Read(&ppc.hash2, sizeof(ppc.hash2));
SaveState->Read(&ppc.imiss, sizeof(ppc.imiss));
SaveState->Read(&ppc.icmp, sizeof(ppc.icmp));
SaveState->Read(&ppc.rpa, sizeof(ppc.rpa));
SaveState->Read(ppc.ibat, sizeof(ppc.ibat));
SaveState->Read(ppc.dbat, sizeof(ppc.dbat));
SaveState->Read(&ppc.evpr, sizeof(ppc.evpr));
SaveState->Read(&ppc.exier, sizeof(ppc.exier));
SaveState->Read(&ppc.exisr, sizeof(ppc.exisr));
SaveState->Read(&ppc.bear, sizeof(ppc.bear));
SaveState->Read(&ppc.besr, sizeof(ppc.besr));
SaveState->Read(&ppc.iocr, sizeof(ppc.iocr));
SaveState->Read(ppc.br, sizeof(ppc.br));
SaveState->Read(&ppc.iabr, sizeof(ppc.iabr));
SaveState->Read(&ppc.esr, sizeof(ppc.esr));
SaveState->Read(&ppc.iccr, sizeof(ppc.iccr));
SaveState->Read(&ppc.dccr, sizeof(ppc.dccr));
SaveState->Read(&ppc.pit, sizeof(ppc.pit));
SaveState->Read(&ppc.pit_counter, sizeof(ppc.pit_counter));
SaveState->Read(&ppc.pit_int_enable, sizeof(ppc.pit_int_enable));
SaveState->Read(&ppc.tsr, sizeof(ppc.tsr));
SaveState->Read(&ppc.dbsr, sizeof(ppc.dbsr));
SaveState->Read(&ppc.sgr, sizeof(ppc.sgr));
SaveState->Read(&ppc.pid, sizeof(ppc.pid));
SaveState->Read(&ppc.reserved, sizeof(ppc.reserved));
SaveState->Read(&ppc.reserved_address, sizeof(ppc.reserved_address));
SaveState->Read(&ppc.external_int, sizeof(ppc.external_int));
SaveState->Read(&ppc.tb, sizeof(ppc.tb));
SaveState->Read(&ppc.dec, sizeof(ppc.dec));
SaveState->Read(&ppc.timer_frac, sizeof(ppc.timer_frac));
SaveState->Read(&ppc.fpscr, sizeof(ppc.fpscr));
SaveState->Read(ppc.fpr, sizeof(ppc.fpr));
SaveState->Read(ppc.sr, sizeof(ppc.sr));
}
UINT32 ppc_get_gpr(unsigned num)
{
return ppc.r[num&31];
}
double ppc_get_fpr(unsigned num)
{
return ppc.fpr[num&31].fd;
}
UINT32 ppc_get_lr(void)
{
return ppc.lr;
}
UINT32 ppc_read_spr(unsigned spr)
{
return ppc_get_spr(spr);
}
UINT32 ppc_read_sr(unsigned num)
{
return ppc.sr[num&15];
}
/******************************************************************************
Debugger Interface
******************************************************************************/
#ifdef SUPERMODEL_DEBUGGER
void ppc_attach_debugger(Debugger::CPPCDebug *PPCDebugPtr)
{
if (PPCDebug != NULL)
ppc_detach_debugger();
PPCDebug = PPCDebugPtr;
Bus = PPCDebug->AttachBus(Bus);
}
void ppc_detach_debugger()
{
if (PPCDebug == NULL)
return;
Bus = PPCDebug->DetachBus();
PPCDebug = NULL;
}
void ppc_break()
{
if (PPCDebug != NULL)
PPCDebug->ForceBreak(true);
}
#else // SUPERMODEL_DEBUGGER
void ppc_break()
{
//
}
#endif // SUPERMODEL_DEBUGGER
void ppc_set_pc(UINT32 pc)
{
ppc.pc = pc;
ppc_change_pc(pc);
ppc.npc = pc + 4;
}
UINT8 ppc_get_cr(unsigned num)
{
return ppc.cr[num&7];
}
void ppc_set_cr(unsigned num, UINT8 val)
{
ppc.cr[num&7] = val;
}
void ppc_set_gpr(unsigned num, UINT32 val)
{
ppc.r[num&31] = val;
}
void ppc_set_fpr(unsigned num, double val)
{
ppc.fpr[num&31].fd = val;
}
void ppc_write_spr(unsigned spr, UINT32 val)
{
ppc_set_spr(spr, val);
}
void ppc_write_sr(unsigned num, UINT32 val)
{
ppc.sr[num&15] = val;
}
UINT32 ppc_read_msr()
{
return ppc_get_msr();
}