mirror of
https://github.com/RetroDECK/Supermodel.git
synced 2024-11-24 14:45:40 +00:00
40c8259130
The standard triangle render requires gl 4.1 core, so should work on mac. The quad renderer runs on 4.5 core. The legacy renderer should still work, and when enabled a regular opengl context will be created, which allows functions marked depreciated in the core profiles to still work. This will only work in windows/linux I think. Apple doesn't support this. A GL 4.1 GPU is now the min required spec. Sorry if you have an OLDER gpu. GL 4.1 is over 12 years old now. This is a big update so I apologise in advance if I accidently broke something :]
706 lines
26 KiB
C++
706 lines
26 KiB
C++
/**
|
|
** Supermodel
|
|
** A Sega Model 3 Arcade Emulator.
|
|
** Copyright 2011-2012 Bart Trzynadlowski, Nik Henson
|
|
**
|
|
** This file is part of Supermodel.
|
|
**
|
|
** Supermodel is free software: you can redistribute it and/or modify it under
|
|
** the terms of the GNU General Public License as published by the Free
|
|
** Software Foundation, either version 3 of the License, or (at your option)
|
|
** any later version.
|
|
**
|
|
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
|
|
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
** more details.
|
|
**
|
|
** You should have received a copy of the GNU General Public License along
|
|
** with Supermodel. If not, see <http://www.gnu.org/licenses/>.
|
|
**/
|
|
|
|
/*
|
|
* Render2D.cpp
|
|
*
|
|
* Implementation of the CRender2D class: OpenGL tile generator graphics.
|
|
*
|
|
* To-Do List
|
|
* ----------
|
|
* - Is there a universal solution to the 'ROLLING START' scrolling bug (Scud
|
|
* Race) and the scrolling text during Magical Truck Adventure's attract
|
|
* mode? To fix Scud Race, either the stencil mask or the h-scroll value must
|
|
* be shifted by 16 pixels. Magical Truck Adventure is similar but opposite.
|
|
* Perhaps this is a function of timing registers accessed via JTAG?
|
|
* - Is there a better way to handle the overscan regions in wide screen mode?
|
|
* Is clearing two thin viewports better than one big clear?
|
|
* - Are v-scroll values 9 or 10 bits? (Does it matter?) Lost World seems to
|
|
* have some scrolling issues.
|
|
* - A proper shut-down function is needed! OpenGL might not be available when
|
|
* the destructor for this class is called.
|
|
*
|
|
* Tile Generator Hardware Overview
|
|
* --------------------------------
|
|
*
|
|
* Model 3's medium resolution tile generator hardware appears to be derived
|
|
* from the Model 2 and System 24 chipset, but is much simpler. It consists of
|
|
* four 64x64 tile layers, comprised of 8x8 pixel tiles, with configurable
|
|
* priorities. There may be additional features but so far, no known Model 3
|
|
* games use them.
|
|
*
|
|
* VRAM is comprised of 1 MB for tile data and an additional 128 KB for the
|
|
* palette (each color occupies 32 bits). The four tilemap layers are referred
|
|
* to as: A (0), A' (1), B (2), and B' (3). Palette RAM may be located on a
|
|
* separate RAM IC.
|
|
*
|
|
* Registers
|
|
* ---------
|
|
*
|
|
* Registers are listed by their byte offset in the PowerPC address space. Each
|
|
* is 32 bits wide and little endian. Only those registers relevant to
|
|
* rendering are listed here (see CTileGen for others).
|
|
*
|
|
* Offset: Description:
|
|
*
|
|
* 0x20 Layer configuration
|
|
* 0x40 Layer A/A' color offset
|
|
* 0x44 Layer B/B' color offset
|
|
* 0x60 Layer A scroll
|
|
* 0x64 Layer A' scroll
|
|
* 0x68 Layer B scroll
|
|
* 0x6C Layer B' scroll
|
|
*
|
|
* Layer configuration is formatted as:
|
|
*
|
|
* 31 0
|
|
* ???? ???? ???? ???? pqrs tuvw ???? ????
|
|
*
|
|
* Bits 'pqrs' control the color depth of layers B', B, A', and A,
|
|
* respectively. If set, the layer's pattern data is encoded as 4 bits,
|
|
* otherwise the pixels are 8 bits.
|
|
*
|
|
* Bits 'tuvw' control priority for layers B', B, A', and A, respectively,
|
|
* which is also the relative ordering of the layers from bottom to top. For
|
|
* each layer, if its bit is clear, it will be drawn below the 3D layer,
|
|
* otherwise it is drawn on top.
|
|
*
|
|
* The remaining registers are described where appropriate further below.
|
|
*
|
|
* VRAM Memory Map
|
|
* ---------------
|
|
*
|
|
* The lower 1 MB of VRAM is used for storing tiles, per-line horizontal scroll
|
|
* values, and the stencil mask, which determines which of each pair of layers
|
|
* is displayed on a given line and column.
|
|
*
|
|
* 00000-F5FFF Tile pattern data
|
|
* F6000-F63FF Layer A horizontal scroll table (512 lines)
|
|
* F6400-F67FF Layer A' horizontal scroll table
|
|
* F6800-F6BFF Layer B horizontal scroll table
|
|
* F6C00-F6FFF Layer B' horizontal scroll table
|
|
* F7000-F77FF Mask table (assuming 4 bytes per line, 512 lines)
|
|
* F7800-F7FFF ?
|
|
* F8000-F9FFF Layer A name table
|
|
* FA000-FBFFF Layer A' name table
|
|
* FC000-FDFFF Layer B name table
|
|
* FE000-FFFFF Layer B' name table
|
|
*
|
|
* Tiles may actually address the entire 1 MB space, although in practice,
|
|
* that would conflict with the other fixed memory regions.
|
|
*
|
|
* Palette
|
|
* -------
|
|
*
|
|
* The palette stores 32768 colors. Each entry is a little endian 32-bit word.
|
|
* The upper 16 bits are unused and the lower 16 bits contain the color:
|
|
*
|
|
* 15 0
|
|
* tbbb bbgg gggr rrrr
|
|
*
|
|
* The 't' bit is for transparency. When set, pixels of that color are
|
|
* transparent, unless they are the bottom-most layer.
|
|
*
|
|
* Tile Name Table and Pattern Layout
|
|
* ----------------------------------
|
|
*
|
|
* The name table is a 64x64 array of 16-bit words serving as indices for tile
|
|
* pattern data and the palette. The first 64 words correspond to the first
|
|
* row of tiles, the next 64 to the second row, etc. Although 64x64 entries
|
|
* describes a 512x512 pixel screen, only the upper-left 62x48 tiles are
|
|
* visible when the vertical and horizontal scroll values are 0. Scrolling
|
|
* moves the 496x384 pixel 'window' around, with individual wrapping of the
|
|
* two axes.
|
|
*
|
|
* The data is actually arranged in 32-bit chunks in little endian format, so
|
|
* that tiles 0, 1, 2, and 3 will be stored as 1, 0, 3, 2. Fetching two name
|
|
* table entries as a single 32-bit word places the left tile in the high 16
|
|
* bits and the right tile in the low 16 bits.
|
|
*
|
|
* The format of a name table entry in 4-bit color mode is:
|
|
*
|
|
* 15 0
|
|
* jkpp pppp pppp iiii
|
|
*
|
|
* The pattern index is '0ppp pppp pppi iiij'. Multiplying by 32 yields the
|
|
* offset in VRAM at which the tile pattern data is stored. Note that the MSB
|
|
* of the name table entry becomes the LSB of the pattern index. This allows
|
|
* for 32768 4-bit tile patterns, each occupying 32 bytes, which means the
|
|
* whole 1 MB VRAM space can be addressed.
|
|
*
|
|
* The 4-bit pattern data is stored as 8 32-bit words. Each word stores a row
|
|
* of 8 pixels:
|
|
*
|
|
* 31 0
|
|
* aaaa bbbb cccc dddd eeee ffff gggg hhhh
|
|
*
|
|
* 'a' is the left-most pixel data. These 4-bit values are combined with bits
|
|
* from the name table to form a palette index, which determines the final
|
|
* color. For example, for pixel 'a', the 15-bit color index is:
|
|
*
|
|
* 14 0
|
|
* kpp pppp pppp aaaa
|
|
*
|
|
* Note that index bits are re-used to form the palette index, meaning that
|
|
* the pattern address partly determines the color.
|
|
*
|
|
* In 8-bit color mode, the name table entry looks like:
|
|
*
|
|
* 15 0
|
|
* ?ppp pppp iiii iiii
|
|
*
|
|
* The low 15 'p' and 'i' bits together form the pattern index, which must be
|
|
* multiplied by 64 to get the offset. The pattern data now consists of 16 32-
|
|
* bit words, each containing four 8-bit pixels:
|
|
*
|
|
* 31 0
|
|
* aaaa aaaa bbbb bbbb cccc cccc dddd dddd
|
|
*
|
|
* 'a' is the left-most pixel. Each line is therefore comprised of two 32-bit
|
|
* words. The palette index for pixel 'a' is now formed from:
|
|
*
|
|
* 14 0
|
|
* ppp pppp aaaa aaaa
|
|
*
|
|
* Stencil Mask
|
|
* ------------
|
|
*
|
|
* For any pixel position, there are in fact only two visible layers, despite
|
|
* there being four defined layers. The layers are grouped in pairs: A (the
|
|
* 'primary' layer) and A' (the 'alternate') form one pair, and B and B' form
|
|
* the other. Only one of the primary or alternate layers from each group may
|
|
* be visible at a given position. The 'stencil mask' controls this.
|
|
*
|
|
* The mask table is a bit field organized into 512 (or 384?) lines with each
|
|
* bit controlling four columns (32 pixels). The mask does not appear to be
|
|
* affected by scrolling -- that is, it does not scroll with the underlying
|
|
* tiles, which do so independently. The mask remains fixed.
|
|
*
|
|
* Each mask entry is a little endian 32-bit word. The high 16 bits control
|
|
* A/A' and the low 16 bits control B/B'. Each word controls an entire line
|
|
* (32 pixels per bit, 512 pixels per 16-bit line mask, where the first 16
|
|
* pixels are allocated to the overscan region.) If a bit is set to 1, the
|
|
* pixel from the primary layer is used, otherwise the alternate layer is
|
|
* used when the mask is 0. It is important to remember that the layers may
|
|
* have been scrolled independently. The mask operates on the final resultant
|
|
* two pixels that are determined for each location.
|
|
*
|
|
* Example of a line mask:
|
|
*
|
|
* 31 15 0
|
|
* 0111 0000 0000 1111 0000 0000 1111 1111
|
|
*
|
|
* These settings would display layer A' for the first 32 pixels of the line,
|
|
* followed by layer A for the next 96 pixels, A' for the subsequent 256
|
|
* pixels, and A for the final 128 pixels. The first 256 pixels of the line
|
|
* would display layer B' and the second 256 pixels would be from layer B.
|
|
*
|
|
* The stencil mask does not affect layer priorities, which are managed
|
|
* separately regardless of mask settings.
|
|
*
|
|
* Scrolling
|
|
* ---------
|
|
*
|
|
* Each of the four layers can be scrolled independently. Vertical scroll
|
|
* values are stored in the appropriate scroll register and horizontal scroll
|
|
* values can be sourced either from the register (in which case the entire
|
|
* layer will be scrolled uniformly) or from a table in VRAM (which contains
|
|
* independent values for each line).
|
|
*
|
|
* The scroll registers are laid out as:
|
|
*
|
|
* 31 0
|
|
* e??? ???y yyyy yyyy h??? ??xx xxxx xxxx
|
|
*
|
|
* The 'e' bit enables the layer when set. The 'y' bits comprise a vertical
|
|
* scroll value in pixels. The 'x' bits form a horizontal scroll value. If 'h'
|
|
* is set, then the VRAM table (line-by-line scrolling) is used, otherwise the
|
|
* 'x' values are applied to every line. It is also possible that the scroll
|
|
* values use more or less bits, but probably no more than 1.
|
|
*
|
|
* Each line must be wrapped back to the beginning of the same line. Likewise,
|
|
* vertical scrolling wraps around back to the top of the tilemap.
|
|
*
|
|
* The horizontal scroll table is a series of 16-bit little endian words, one
|
|
* for each line beginning at 0. It appears all the values can be used for
|
|
* scrolling (no control bits have been observed). The number of bits actually
|
|
* used by the hardware is irrelevant -- wrapping has the effect of making
|
|
* higher order bits unimportant.
|
|
*
|
|
* Layer Priorities
|
|
* ----------------
|
|
*
|
|
* The layer control register (0x20) contains 4 bits that appear to control
|
|
* layer priorities. It is assumed that the 3D graphics, output by the Real3D
|
|
* pixel processors independently of the tile generator, constitute their own
|
|
* 'layer' and that the 2D tilemaps appear in front or behind. There may be a
|
|
* specific function for each priority bit or the field may be interpreted as a
|
|
* single 4-bit value denoting preset layer orders.
|
|
*
|
|
* Color Offsets
|
|
* -------------
|
|
*
|
|
* Color offsets can be applied to the final RGB color value of every pixel.
|
|
* This is used for effects such as fading to a certain color, lightning (Lost
|
|
* World), etc. The current best guess is that the two registers control each
|
|
* pair (A/A' and B/B') of layers. The format appears to be:
|
|
*
|
|
* 31 0
|
|
* ???? ???? rrrr rrrr gggg gggg bbbb bbbb
|
|
*
|
|
* Where 'r', 'g', and 'b' appear to be signed 8-bit color offsets. Because
|
|
* they exceed the color resolution of the palette, they must be scaled
|
|
* appropriately.
|
|
*
|
|
* Color offset registers are handled in TileGen.cpp. Two palettes are computed
|
|
* -- one for A/A' and another for B/B'. These are passed to the renderer.
|
|
*/
|
|
|
|
#include "Render2D.h"
|
|
|
|
#include "Supermodel.h"
|
|
#include "Shader.h"
|
|
#include "Shaders2D.h" // fragment and vertex shaders
|
|
|
|
#include <cstring>
|
|
#include <GL/glew.h>
|
|
|
|
|
|
/******************************************************************************
|
|
Definitions and Constants
|
|
******************************************************************************/
|
|
|
|
// Shader program files (for use in development builds only)
|
|
#define VERTEX_2D_SHADER_FILE "Src/Graphics/Vertex2D.glsl"
|
|
#define FRAGMENT_2D_SHADER_FILE "Src/Graphics/Fragment2D.glsl"
|
|
|
|
|
|
/******************************************************************************
|
|
Layer Rendering
|
|
|
|
This code is quite slow and badly needs to be optimized. Dirty rectangles
|
|
should be implemented first and tile pre-decoding second.
|
|
******************************************************************************/
|
|
|
|
template <int bits, bool alphaTest, bool clip>
|
|
static inline void DrawTileLine(uint32_t *line, int pixelOffset, uint16_t tile, int patternLine, const uint32_t *vram, const uint32_t *palette, uint16_t mask)
|
|
{
|
|
static_assert(bits == 4 || bits == 8, "Tiles are either 4- or 8-bit");
|
|
|
|
// For 8-bit pixels, each line of tile pattern is two words
|
|
if (bits == 8)
|
|
patternLine *= 2;
|
|
|
|
// Compute offset of pattern for this line
|
|
int patternOffset;
|
|
if (bits == 4)
|
|
{
|
|
patternOffset = ((tile & 0x3FFF) << 1) | ((tile >> 15) & 1);
|
|
patternOffset *= 32;
|
|
patternOffset /= 4;
|
|
}
|
|
else
|
|
{
|
|
patternOffset = tile & 0x3FFF;
|
|
patternOffset *= 64;
|
|
patternOffset /= 4;
|
|
}
|
|
|
|
// Name table entry provides high color bits
|
|
uint32_t colorHi = tile & ((bits == 4) ? 0x7FF0 : 0x7F00);
|
|
|
|
// Draw
|
|
if (bits == 4)
|
|
{
|
|
uint32_t pattern = vram[patternOffset + patternLine];
|
|
for (int p = 7; p >= 0; p--)
|
|
{
|
|
if (!clip || (/*pixelOffset >= 0 &&*/ (unsigned int)pixelOffset < 496u)) // the >= 0 check is accounted for, as the cast to uint makes them appear as very large unsigned values
|
|
{
|
|
uint16_t maskTest = 1 << (15-((pixelOffset+0)/32));
|
|
bool visible = (mask & maskTest) != 0;
|
|
uint32_t pixel = visible ? palette[((pattern >> (p*4)) & 0xF) | colorHi] : 0;
|
|
if (!alphaTest || (visible && (pixel >> 24) != 0)) // only draw opaque pixels
|
|
line[pixelOffset] = pixel;
|
|
}
|
|
++pixelOffset;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < 2; i++) // 4 pixels per word
|
|
{
|
|
uint32_t pattern = vram[patternOffset + patternLine + i];
|
|
for (int p = 3; p >= 0; p--)
|
|
{
|
|
if (!clip || (/*pixelOffset >= 0 &&*/ (unsigned int)pixelOffset < 496u)) // the >= 0 check is accounted for, as the cast to uint makes them appear as very large unsigned values
|
|
{
|
|
uint16_t maskTest = 1 << (15-((pixelOffset+0)/32));
|
|
bool visible = (mask & maskTest) != 0;
|
|
uint32_t pixel = visible ? palette[((pattern >> (p*8)) & 0xFF) | colorHi] : 0;
|
|
if (!alphaTest || (visible && (pixel >> 24) != 0))
|
|
line[pixelOffset] = pixel;
|
|
}
|
|
++pixelOffset;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int bits, bool alphaTest>
|
|
static void DrawLayer(uint32_t *pixels, int layerNum, const uint32_t *vram, const uint32_t *regs, const uint32_t *palette)
|
|
{
|
|
const uint16_t *nameTableBase = (const uint16_t *) &vram[(0xF8000 + layerNum * 0x2000) / 4];
|
|
const uint16_t *hScrollTable = (const uint16_t *) &vram[(0xF6000 + layerNum * 0x400) / 4];
|
|
bool lineScrollMode = (regs[0x60/4 + layerNum] & 0x8000) != 0;
|
|
int hFullScroll = regs[0x60/4 + layerNum] & 0x3FF;
|
|
int vScroll = (regs[0x60/4 + layerNum] >> 16) & 0x1FF;
|
|
|
|
const uint16_t *maskTable = (const uint16_t *) &vram[0xF7000 / 4];
|
|
if (layerNum < 2) // little endian: layers A and A' use second word in each pair
|
|
maskTable += 1;
|
|
|
|
// If mask bit is clear, alternate layer is shown. We want to test for non-
|
|
// zero, so we flip the mask when drawing alternate layers (layers 1 and 3).
|
|
const uint16_t maskPolarity = (layerNum & 1) ? 0xFFFF : 0x0000;
|
|
|
|
uint32_t *line = pixels;
|
|
|
|
for (int y = 0; y < 384; y++)
|
|
{
|
|
int hScroll = (lineScrollMode ? hScrollTable[y] : hFullScroll) & 0x1FF;
|
|
int hTile = hScroll / 8;
|
|
int hFine = hScroll & 7; // horizontal pixel offset within tile line
|
|
int vFine = (y + vScroll) & 7; // vertical pixel offset within 8x8 tile
|
|
const uint16_t *nameTable = &nameTableBase[(64 * ((y + vScroll) / 8)) & 0xFFF]; // clamp to 64x64 = 0x1000
|
|
uint16_t mask = *maskTable ^ maskPolarity; // each bit covers 32 pixels
|
|
|
|
int pixelOffset = -hFine;
|
|
int extraTile = (hFine != 0) ? 1 : 0; // h-scrolling requires part of 63rd tile
|
|
|
|
// First tile may be clipped
|
|
DrawTileLine<bits, alphaTest, true>(line, pixelOffset, nameTable[(hTile ^ 1) & 63], vFine, vram, palette, mask);
|
|
++hTile;
|
|
pixelOffset += 8;
|
|
// Middle tiles will not be clipped
|
|
for (int tx = 1; tx < (62 - 1 + extraTile); tx++)
|
|
{
|
|
DrawTileLine<bits, alphaTest, false>(line, pixelOffset, nameTable[(hTile ^ 1) & 63], vFine, vram, palette, mask);
|
|
++hTile;
|
|
pixelOffset += 8;
|
|
}
|
|
// Last tile may be clipped
|
|
DrawTileLine<bits, alphaTest, true>(line, pixelOffset, nameTable[(hTile ^ 1) & 63], vFine, vram, palette, mask);
|
|
++hTile;
|
|
pixelOffset += 8;
|
|
|
|
// Advance one line
|
|
maskTable += 2;
|
|
line += 496;
|
|
}
|
|
}
|
|
|
|
std::pair<bool, bool> CRender2D::DrawTilemaps(uint32_t *pixelsBottom, uint32_t *pixelsTop)
|
|
{
|
|
unsigned priority = (m_regs[0x20/4] >> 8) & 0xF;
|
|
|
|
// Render bottom layers
|
|
bool noBottomSurface = true;
|
|
static const int bottomOrder[4] = { 3, 2, 1, 0 };
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
int layerNum = bottomOrder[i];
|
|
bool is4Bit = (m_regs[0x20/4] & (1 << (12 + layerNum))) != 0;
|
|
bool enabled = (m_regs[0x60/4 + layerNum] & 0x80000000) != 0;
|
|
bool selected = (priority & (1 << layerNum)) == 0;
|
|
if (enabled && selected)
|
|
{
|
|
if (noBottomSurface)
|
|
{
|
|
if (is4Bit)
|
|
DrawLayer<4, false>(pixelsBottom, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
|
|
else
|
|
DrawLayer<8, false>(pixelsBottom, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
|
|
}
|
|
else
|
|
{
|
|
if (is4Bit)
|
|
DrawLayer<4, true>(pixelsBottom, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
|
|
else
|
|
DrawLayer<8, true>(pixelsBottom, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
|
|
}
|
|
noBottomSurface = false;
|
|
}
|
|
}
|
|
|
|
// Render top layers
|
|
// NOTE: layer ordering is different according to MAME (which has 3, 2, 0, 1
|
|
// for top layer). Until I see evidence that this is correct and not a typo,
|
|
// I will assume consistent layer ordering.
|
|
bool noTopSurface = true;
|
|
static const int topOrder[4] = { 3, 2, 1, 0 };
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
int layerNum = topOrder[i];
|
|
bool is4Bit = (m_regs[0x20/4] & (1 << (12 + layerNum))) != 0;
|
|
bool enabled = (m_regs[0x60/4 + layerNum] & 0x80000000) != 0;
|
|
bool selected = (priority & (1 << layerNum)) != 0;
|
|
if (enabled && selected)
|
|
{
|
|
if (noTopSurface)
|
|
{
|
|
if (is4Bit)
|
|
DrawLayer<4, false>(pixelsTop, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
|
|
else
|
|
DrawLayer<8, false>(pixelsTop, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
|
|
}
|
|
else
|
|
{
|
|
if (is4Bit)
|
|
DrawLayer<4, true>(pixelsTop, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
|
|
else
|
|
DrawLayer<8, true>(pixelsTop, layerNum, m_vram, m_regs, m_palette[layerNum / 2]);
|
|
}
|
|
noTopSurface = false;
|
|
}
|
|
}
|
|
|
|
// Indicate whether top and bottom surfaces have to be rendered
|
|
return std::pair<bool, bool>(!noTopSurface, !noBottomSurface);
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
Frame Display Functions
|
|
******************************************************************************/
|
|
|
|
// Draws a surface to the screen (0 is top and 1 is bottom)
|
|
void CRender2D::DisplaySurface(int surface)
|
|
{
|
|
// Shader program
|
|
m_shader.EnableShader();
|
|
|
|
glBindVertexArray(m_vao);
|
|
|
|
// Draw the surface
|
|
glActiveTexture(GL_TEXTURE0); // texture unit 0
|
|
glBindTexture(GL_TEXTURE_2D, m_texID[surface]);
|
|
|
|
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
|
|
|
|
glBindVertexArray(0);
|
|
|
|
m_shader.DisableShader();
|
|
}
|
|
|
|
// Set up viewport and OpenGL state for 2D rendering (sets up blending function but disables blending)
|
|
void CRender2D::Setup2D(bool isBottom)
|
|
{
|
|
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // alpha of 1.0 is opaque, 0 is transparent
|
|
glDisable(GL_BLEND);
|
|
|
|
// Disable Z-buffering
|
|
glDisable(GL_DEPTH_TEST);
|
|
|
|
// Clear everything if requested or just overscan areas for wide screen mode
|
|
if (isBottom)
|
|
{
|
|
glClearColor(0.0, 0.0, 0.0, 0.0);
|
|
glViewport(0, 0, m_totalXPixels, m_totalYPixels);
|
|
glDisable(GL_SCISSOR_TEST); // scissor is enabled to fix the 2d/3d miss match problem
|
|
glClear(GL_COLOR_BUFFER_BIT); // we want to clear outside the scissored areas so must disable it
|
|
glEnable(GL_SCISSOR_TEST);
|
|
}
|
|
|
|
// Set up the viewport and orthogonal projection
|
|
bool stretchBottom = m_config["WideBackground"].ValueAs<bool>() && isBottom;
|
|
if (!stretchBottom)
|
|
{
|
|
glViewport(m_xOffset - m_correction, m_yOffset + m_correction, m_xPixels, m_yPixels); //Preserve aspect ratio of tile layer by constraining and centering viewport
|
|
}
|
|
}
|
|
|
|
void CRender2D::BeginFrame(void)
|
|
{
|
|
}
|
|
|
|
void CRender2D::PreRenderFrame(void)
|
|
{
|
|
// Update all layers
|
|
m_surfaces_present = DrawTilemaps(m_bottomSurface, m_topSurface);
|
|
glActiveTexture(GL_TEXTURE0); // texture unit 0
|
|
if (m_surfaces_present.first)
|
|
{
|
|
glBindTexture(GL_TEXTURE_2D, m_texID[0]);
|
|
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 496, 384, GL_RGBA, GL_UNSIGNED_BYTE, m_topSurface);
|
|
}
|
|
if (m_surfaces_present.second)
|
|
{
|
|
glBindTexture(GL_TEXTURE_2D, m_texID[1]);
|
|
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 496, 384, GL_RGBA, GL_UNSIGNED_BYTE, m_bottomSurface);
|
|
}
|
|
}
|
|
|
|
void CRender2D::RenderFrameBottom(void)
|
|
{
|
|
// Display bottom surface if anything was drawn there, else clear everything
|
|
Setup2D(true);
|
|
if (m_surfaces_present.second)
|
|
DisplaySurface(1);
|
|
}
|
|
|
|
void CRender2D::RenderFrameTop(void)
|
|
{
|
|
// Display top surface only if it exists
|
|
if (m_surfaces_present.first)
|
|
{
|
|
Setup2D(false);
|
|
glEnable(GL_BLEND);
|
|
DisplaySurface(0);
|
|
}
|
|
}
|
|
|
|
void CRender2D::EndFrame(void)
|
|
{
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
Emulation Callbacks
|
|
******************************************************************************/
|
|
|
|
// Deprecated
|
|
void CRender2D::WriteVRAM(unsigned addr, uint32_t data)
|
|
{
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
Configuration, Initialization, and Shutdown
|
|
******************************************************************************/
|
|
|
|
void CRender2D::AttachRegisters(const uint32_t *regPtr)
|
|
{
|
|
m_regs = regPtr;
|
|
DebugLog("Render2D attached registers\n");
|
|
}
|
|
|
|
void CRender2D::AttachPalette(const uint32_t *palPtr[2])
|
|
{
|
|
m_palette[0] = palPtr[0];
|
|
m_palette[1] = palPtr[1];
|
|
DebugLog("Render2D attached palette\n");
|
|
}
|
|
|
|
void CRender2D::AttachVRAM(const uint8_t *vramPtr)
|
|
{
|
|
m_vram = (uint32_t *) vramPtr;
|
|
DebugLog("Render2D attached VRAM\n");
|
|
}
|
|
|
|
// Memory pool and offsets within it
|
|
#define MEMORY_POOL_SIZE (2*512*384*4)
|
|
#define OFFSET_TOP_SURFACE 0 // 512*384*4 bytes
|
|
#define OFFSET_BOTTOM_SURFACE (512*384*4) // 512*384*4
|
|
|
|
bool CRender2D::Init(unsigned xOffset, unsigned yOffset, unsigned xRes, unsigned yRes, unsigned totalXRes, unsigned totalYRes)
|
|
{
|
|
// Allocate memory for layer surfaces
|
|
m_memoryPool = new(std::nothrow) uint8_t[MEMORY_POOL_SIZE];
|
|
if (NULL == m_memoryPool)
|
|
return ErrorLog("Insufficient memory for tilemap surfaces (need %1.1f MB).", float(MEMORY_POOL_SIZE) / 0x100000);
|
|
memset(m_memoryPool, 0, MEMORY_POOL_SIZE); // clear textures
|
|
|
|
// Set up pointers to memory regions
|
|
m_topSurface = (uint32_t *) &m_memoryPool[OFFSET_TOP_SURFACE];
|
|
m_bottomSurface = (uint32_t *) &m_memoryPool[OFFSET_BOTTOM_SURFACE];
|
|
|
|
// Resolution
|
|
m_xPixels = xRes;
|
|
m_yPixels = yRes;
|
|
m_xOffset = xOffset;
|
|
m_yOffset = yOffset;
|
|
m_totalXPixels = totalXRes;
|
|
m_totalYPixels = totalYRes;
|
|
m_correction = (UINT32)(((yRes / 384.f) * 2) + 0.5f); // for some reason the 2d layer is 2 pixels off the 3D
|
|
|
|
DebugLog("Render2D initialized (allocated %1.1f MB)\n", float(MEMORY_POOL_SIZE) / 0x100000);
|
|
return OKAY;
|
|
}
|
|
|
|
CRender2D::CRender2D(const Util::Config::Node& config)
|
|
: m_config(config),
|
|
m_vao(0)
|
|
{
|
|
DebugLog("Built Render2D\n");
|
|
|
|
m_shader.LoadShaders(s_vertexShaderSource, s_fragmentShaderSource);
|
|
m_shader.GetUniformLocationMap("tex1");
|
|
m_shader.EnableShader();
|
|
|
|
// update uniform memory
|
|
glUniform1i(m_shader.uniformLocMap["tex1"], 0); // bind to texture unit zero
|
|
|
|
m_shader.DisableShader();
|
|
|
|
// Create textures
|
|
glActiveTexture(GL_TEXTURE0); // texture unit 0
|
|
glGenTextures(2, m_texID);
|
|
|
|
for (int i = 0; i < 2; i++)
|
|
{
|
|
glBindTexture(GL_TEXTURE_2D, m_texID[i]);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, 496, 384, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
|
|
}
|
|
|
|
glGenVertexArrays(1, &m_vao);
|
|
glBindVertexArray(m_vao);
|
|
// no states needed since we do it in the shader
|
|
glBindVertexArray(0);
|
|
}
|
|
|
|
CRender2D::~CRender2D(void)
|
|
{
|
|
m_shader.UnloadShaders();
|
|
glDeleteTextures(2, m_texID);
|
|
|
|
if (m_vao) {
|
|
glDeleteVertexArrays(1, &m_vao);
|
|
m_vao = 0;
|
|
}
|
|
|
|
if (m_memoryPool)
|
|
{
|
|
delete [] m_memoryPool;
|
|
m_memoryPool = 0;
|
|
}
|
|
|
|
m_vram = 0;
|
|
m_topSurface = 0;
|
|
m_bottomSurface = 0;
|
|
|
|
DebugLog("Destroyed Render2D\n");
|
|
}
|