Supermodel/Src/OSD/Windows/DirectInputSystem.cpp
2020-04-19 08:34:58 +00:00

2159 lines
69 KiB
C++

/**
** Supermodel
** A Sega Model 3 Arcade Emulator.
** Copyright 2011 Bart Trzynadlowski, Nik Henson
**
** This file is part of Supermodel.
**
** Supermodel is free software: you can redistribute it and/or modify it under
** the terms of the GNU General Public License as published by the Free
** Software Foundation, either version 3 of the License, or (at your option)
** any later version.
**
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
** more details.
**
** You should have received a copy of the GNU General Public License along
** with Supermodel. If not, see <http://www.gnu.org/licenses/>.
**/
/*
* DirectInputSystem.cpp
*
* Implementation of the DirectInput-based input system. Also provides support
* for XInput and Raw Input.
*/
#include "DirectInputSystem.h"
#include "Util/Format.h"
#include "Supermodel.h"
#include <array>
#include <algorithm>
#include <wbemidl.h>
#include <oleauto.h>
#include <SDL.h>
#include <SDL_syswm.h>
/*
* There seem to be three versions of XInput floating around, all of which
* ought to provide the functionality we need. We try them all in sequence,
* in order of newest/most feature-laden first.
*/
static std::array<const char *, 3> s_xinput_dlls = { TEXT("xinput1_4.dll"), TEXT("xinput1_3.dll"), TEXT("xinput9_1_0.dll") };
static std::array<const char *, 3> s_xinput_dlls_a = { "xinput1_4.dll", "xinput1_3.dll", "xinput9_1_0.dll" };
// TODO - need to double check these all correct and see if can fill in any missing codes (although most just don't exist)
DIKeyMapStruct CDirectInputSystem::s_keyMap[] =
{
// General keys
{ "BACKSPACE", DIK_BACK },
{ "TAB", DIK_TAB },
//{ "CLEAR", ?? },
{ "RETURN", DIK_RETURN },
{ "PAUSE", DIK_PAUSE },
{ "ESCAPE", DIK_ESCAPE },
{ "SPACE", DIK_SPACE },
//{ "EXCLAIM", ?? },
//{ "DBLQUOTE", ?? },
//{ "HASH", ?? },
//{ "DOLLAR", ?? },
//{ "AMPERSAND", ?? },
{ "QUOTE", DIK_APOSTROPHE },
{ "LEFTPAREN", DIK_LBRACKET },
{ "RIGHTPAREN", DIK_RBRACKET },
//{ "ASTERISK", ?? },
//{ "PLUS", ?? },
{ "COMMA", DIK_COMMA },
{ "MINUS", DIK_MINUS },
{ "PERIOD", DIK_PERIOD },
{ "SLASH", DIK_SLASH },
{ "0", DIK_0 },
{ "1", DIK_1 },
{ "2", DIK_2 },
{ "3", DIK_3 },
{ "4", DIK_4 },
{ "5", DIK_5 },
{ "6", DIK_6 },
{ "7", DIK_7 },
{ "8", DIK_8 },
{ "9", DIK_9 },
//{ "COLON", ?? },
{ "SEMICOLON", DIK_SEMICOLON },
{ "LESS", DIK_OEM_102 },
{ "EQUALS", DIK_EQUALS },
//{ "GREATER", ?? },
//{ "QUESTION", ?? },
//{ "AT", ?? },
//{ "LEFTBRACKET", ?? },
//{ "BACKSLASH", ?? },
//{ "RIGHTBRACKET", ?? },
//{ "CARET", ?? },
//{ "UNDERSCORE", ?? },
{ "BACKQUOTE", DIK_GRAVE },
{ "A", DIK_A },
{ "B", DIK_B },
{ "C", DIK_C },
{ "D", DIK_D },
{ "E", DIK_E },
{ "F", DIK_F },
{ "G", DIK_G },
{ "H", DIK_H },
{ "I", DIK_I },
{ "J", DIK_J },
{ "K", DIK_K },
{ "L", DIK_L },
{ "M", DIK_M },
{ "N", DIK_N },
{ "O", DIK_O },
{ "P", DIK_P },
{ "Q", DIK_Q },
{ "R", DIK_R },
{ "S", DIK_S },
{ "T", DIK_T },
{ "U", DIK_U },
{ "V", DIK_V },
{ "W", DIK_W },
{ "X", DIK_X },
{ "Y", DIK_Y },
{ "Z", DIK_Z },
{ "DEL", DIK_DELETE },
// Keypad
{ "KEYPAD0", DIK_NUMPAD0 },
{ "KEYPAD1", DIK_NUMPAD1 },
{ "KEYPAD2", DIK_NUMPAD2 },
{ "KEYPAD3", DIK_NUMPAD3 },
{ "KEYPAD4", DIK_NUMPAD4 },
{ "KEYPAD5", DIK_NUMPAD5 },
{ "KEYPAD6", DIK_NUMPAD6 },
{ "KEYPAD7", DIK_NUMPAD7 },
{ "KEYPAD8", DIK_NUMPAD8 },
{ "KEYPAD9", DIK_NUMPAD9 },
{ "KEYPADPERIOD", DIK_DECIMAL },
{ "KEYPADDIVIDE", DIK_DIVIDE },
{ "KEYPADMULTIPLY", DIK_MULTIPLY },
{ "KEYPADMINUS", DIK_SUBTRACT },
{ "KEYPADPLUS", DIK_ADD },
{ "KEYPADENTER", DIK_NUMPADENTER },
{ "KEYPADEQUALS", DIK_NUMPADEQUALS },
// Arrows + Home/End Pad
{ "UP", DIK_UP },
{ "DOWN", DIK_DOWN },
{ "RIGHT", DIK_RIGHT },
{ "LEFT", DIK_LEFT },
{ "INSERT", DIK_INSERT },
{ "HOME", DIK_HOME },
{ "END", DIK_END },
{ "PGUP", DIK_PRIOR },
{ "PGDN", DIK_NEXT },
// Function Key
{ "F1", DIK_F1 },
{ "F2", DIK_F2 },
{ "F3", DIK_F3 },
{ "F4", DIK_F4 },
{ "F5", DIK_F5 },
{ "F6", DIK_F6 },
{ "F7", DIK_F7 },
{ "F8", DIK_F8 },
{ "F9", DIK_F9 },
{ "F10", DIK_F10 },
{ "F11", DIK_F11 },
{ "F12", DIK_F12 },
{ "F13", DIK_F13 },
{ "F14", DIK_F14 },
{ "F15", DIK_F15 },
// Modifier Keys
{ "NUMLOCK", DIK_NUMLOCK },
{ "CAPSLOCK", DIK_CAPITAL },
{ "SCROLLLOCK", DIK_SCROLL },
{ "RIGHTSHIFT", DIK_RSHIFT },
{ "LEFTSHIFT", DIK_LSHIFT },
{ "RIGHTCTRL", DIK_RCONTROL },
{ "LEFTCTRL", DIK_LCONTROL },
{ "RIGHTALT", DIK_RMENU },
{ "LEFTALT", DIK_LMENU },
//{ "RIGHTMETA", ?? },
//{ "LEFTMETA", ?? },
{ "RIGHTWINDOWS", DIK_RWIN },
{ "LEFTWINDOWS", DIK_LWIN },
//{ "ALTGR", ?? },
//{ "COMPOSE", ?? },
// Other
//{ "HELP", ?? },
{ "PRINT", DIK_SYSRQ },
//{ "SYSREQ", ?? },
//{ "BREAK", ?? },
//{ "MENU", ?? },
//{ "POWER", ?? },
//{ "EURO", ?? },
//{ "UNDO", ?? },
};
static bool IsXInputDevice(const GUID &devProdGUID)
{
// Following code taken from MSDN
IWbemLocator* pIWbemLocator = NULL;
IEnumWbemClassObject* pEnumDevices = NULL;
IWbemClassObject* pDevices[20] = {0};
IWbemServices* pIWbemServices = NULL;
BSTR bstrNamespace = NULL;
BSTR bstrDeviceID = NULL;
BSTR bstrClassName = NULL;
// Create WMI
bool isXInpDev = false;
HRESULT hr = CoCreateInstance(CLSID_WbemLocator, NULL, CLSCTX_INPROC_SERVER, IID_IWbemLocator, (LPVOID*)&pIWbemLocator); // this version does not use __uuidof() and works w/ gcc
//HRESULT hr = CoCreateInstance(__uuidof(WbemLocator), NULL, CLSCTX_INPROC_SERVER, __uuidof(IWbemLocator), (LPVOID*)&pIWbemLocator);
if (FAILED(hr) || pIWbemLocator == NULL)
goto Finish;
if ((bstrNamespace = SysAllocString(L"\\\\.\\root\\cimv2")) == NULL) goto Finish;
if ((bstrClassName = SysAllocString(L"Win32_PNPEntity")) == NULL) goto Finish;
if ((bstrDeviceID = SysAllocString(L"DeviceID")) == NULL) goto Finish;
// Connect to WMI
hr = pIWbemLocator->ConnectServer(bstrNamespace, NULL, NULL, 0L, 0L, NULL, NULL, &pIWbemServices);
if (FAILED(hr) || pIWbemServices == NULL)
goto Finish;
// Switch security level to IMPERSONATE
CoSetProxyBlanket(pIWbemServices, RPC_C_AUTHN_WINNT, RPC_C_AUTHZ_NONE, NULL, RPC_C_AUTHN_LEVEL_CALL, RPC_C_IMP_LEVEL_IMPERSONATE, NULL, EOAC_NONE);
hr = pIWbemServices->CreateInstanceEnum(bstrClassName, 0, NULL, &pEnumDevices);
if (FAILED(hr) || pEnumDevices == NULL)
goto Finish;
// Loop over all devices
for (;;)
{
// Get 20 at a time
DWORD uReturned;
hr = pEnumDevices->Next(10000, 20, pDevices, &uReturned);
if (FAILED(hr) || uReturned == 0)
goto Finish;
for (unsigned devNum = 0; devNum < uReturned; devNum++)
{
// For each device, get its device ID
VARIANT var;
hr = pDevices[devNum]->Get(bstrDeviceID, 0L, &var, NULL, NULL);
if (SUCCEEDED(hr) && var.vt == VT_BSTR && var.bstrVal != NULL)
{
// Check if the device ID contains "IG_", which means it's an XInput device (this can't be determined via DirectInput on its own)
if (wcsstr(var.bstrVal, L"IG_"))
{
// If so, then get VID/PID from var.bstrVal
DWORD dwPid = 0, dwVid = 0;
WCHAR* strVid = wcsstr(var.bstrVal, L"VID_");
if (strVid && swscanf(strVid, L"VID_%4X", &dwVid) != 1)
dwVid = 0;
WCHAR* strPid = wcsstr(var.bstrVal, L"PID_");
if (strPid && swscanf(strPid, L"PID_%4X", &dwPid) != 1)
dwPid = 0;
// Compare VID/PID to values held in DirectInput device's product GUID
DWORD dwVidPid = MAKELONG(dwVid, dwPid);
if (dwVidPid == devProdGUID.Data1)
{
isXInpDev = true;
goto Finish;
}
}
}
if (pDevices[devNum] != NULL)
{
pDevices[devNum]->Release();
pDevices[devNum] = NULL;
}
}
}
Finish:
if (bstrNamespace)
SysFreeString(bstrNamespace);
if (bstrDeviceID)
SysFreeString(bstrDeviceID);
if (bstrClassName)
SysFreeString(bstrClassName);
for (unsigned devNum = 0; devNum < 20; devNum++)
{
if (pDevices[devNum] != NULL)
pDevices[devNum]->Release();
}
if (pEnumDevices != NULL)
pEnumDevices->Release();
if (pIWbemLocator != NULL)
pIWbemLocator->Release();
if (pIWbemServices != NULL)
pIWbemServices->Release();
return isXInpDev;
}
struct DIEnumDevsContext
{
vector<DIJoyInfo> *infos;
bool useXInput;
};
static BOOL CALLBACK DI8EnumDevicesCallback(LPCDIDEVICEINSTANCE instance, LPVOID context)
{
DIEnumDevsContext *diDevsContext = (DIEnumDevsContext*)context;
// Keep track of all joystick device GUIDs
DIJoyInfo info;
memset(&info, 0, sizeof(info));
info.guid = instance->guidInstance;
// If XInput is enabled, see if device is an XInput device
info.isXInput = diDevsContext->useXInput && IsXInputDevice(instance->guidProduct);
diDevsContext->infos->push_back(info);
return DIENUM_CONTINUE;
}
struct DIEnumObjsContext
{
JoyDetails *joyDetails;
unsigned sliderCount;
bool enumError;
};
static BOOL CALLBACK DI8EnumObjectsCallback(LPCDIDEVICEOBJECTINSTANCE instance, LPVOID context)
{
DIEnumObjsContext *diObjsContext = (DIEnumObjsContext*)context;
// Get data format for object
int objNum = DIDFT_GETINSTANCE(instance->dwType);
DIOBJECTDATAFORMAT fmt = c_dfDIJoystick2.rgodf[objNum];
// Work out which axis or slider is currently being enumerated from the GUID
int axisNum;
if (instance->guidType == GUID_XAxis) axisNum = AXIS_X;
else if (instance->guidType == GUID_YAxis) axisNum = AXIS_Y;
else if (instance->guidType == GUID_ZAxis) axisNum = AXIS_Z;
else if (instance->guidType == GUID_RxAxis) axisNum = AXIS_RX;
else if (instance->guidType == GUID_RyAxis) axisNum = AXIS_RY;
else if (instance->guidType == GUID_RzAxis) axisNum = AXIS_RZ;
else if (instance->guidType == GUID_Slider)
{
// Work out which slider from count
switch (diObjsContext->sliderCount++)
{
case 0: axisNum = AXIS_S1; break;
case 1: axisNum = AXIS_S2; break;
default:
// If couldn't match then ignore slider
return DIENUM_CONTINUE;
}
}
else if (instance->dwType & DIDFT_AXIS)
{
// If is an axis but couldn't match GUID above (which, according to MSDN, is an optional attribute), then flag error and try matching via offset
int objNum = DIDFT_GETINSTANCE(instance->dwType);
DIOBJECTDATAFORMAT fmt = c_dfDIJoystick2.rgodf[objNum];
diObjsContext->enumError = true;
#ifdef _MSC_VER // MS VisualC++
switch (fmt.dwOfs)
{
case DIJOFS_X: axisNum = AXIS_X; break;
case DIJOFS_Y: axisNum = AXIS_Y; break;
case DIJOFS_Z: axisNum = AXIS_Z; break;
case DIJOFS_RX: axisNum = AXIS_RX; break;
case DIJOFS_RY: axisNum = AXIS_RY; break;
case DIJOFS_RZ: axisNum = AXIS_RZ; break;
default:
// If still couldn't match then it is not an axis
return DIENUM_CONTINUE;
}
#else // GCC
// DIJOFS_* are not technically constants (at least in the MinGW dinput.h that I'm using)
if (DIJOFS_X == fmt.dwOfs) axisNum = AXIS_X;
else if (DIJOFS_Y == fmt.dwOfs) axisNum = AXIS_Y;
else if (DIJOFS_Z == fmt.dwOfs) axisNum = AXIS_Z;
else if (DIJOFS_Z == fmt.dwOfs) axisNum = AXIS_Z;
else if (DIJOFS_RX == fmt.dwOfs) axisNum = AXIS_RX;
else if (DIJOFS_RY == fmt.dwOfs) axisNum = AXIS_RY;
else if (DIJOFS_RZ == fmt.dwOfs) axisNum = AXIS_RZ;
else
// If still couldn't match then it is not an axis
return DIENUM_CONTINUE;
#endif
}
else
{
// Ignore all other types of object
return DIENUM_CONTINUE;
}
// If axis overlaps with a previous one, flag error
JoyDetails *joyDetails = diObjsContext->joyDetails;
if (joyDetails->hasAxis[axisNum])
diObjsContext->enumError = true;
// Record fact that axis is present and also whether it has force feedback available
joyDetails->hasAxis[axisNum] = true;
joyDetails->axisHasFF[axisNum] = !!(instance->dwFlags & DIDOI_FFACTUATOR);
// Get axis name from DirectInput and store that too
char *axisName = joyDetails->axisName[axisNum];
strcpy(axisName, CInputSystem::GetDefaultAxisName(axisNum));
strcat(axisName, " (");
strncat(axisName, instance->tszName, MAX_NAME_LENGTH - strlen(axisName) - 1);
strcat(axisName, ")");
return DIENUM_CONTINUE;
}
static BOOL CALLBACK DI8EnumEffectsCallback(LPCDIEFFECTINFO effectInfo, LPVOID context)
{
// Check joystick has at least one of required types of effects
JoyDetails *joyDetails = (JoyDetails*)context;
if (!!(effectInfo->dwEffType & (DIEFT_CONSTANTFORCE | DIEFT_PERIODIC | DIEFT_CONDITION)))
joyDetails->hasFFeedback = true;
return DIENUM_CONTINUE;
}
const char *CDirectInputSystem::ConstructName(bool useRawInput, bool useXInput)
{
if (useRawInput)
return (useXInput ? "RawInput/XInput" : "RawInput/DirectInput");
else
return (useXInput ? "Xinput" : "DirectInput");
}
CDirectInputSystem::CDirectInputSystem(const Util::Config::Node &config, SDL_Window *window, bool useRawInput, bool useXInput) :
CInputSystem(ConstructName(useRawInput, useXInput)),
m_config(config),
m_useRawInput(useRawInput), m_useXInput(useXInput), m_enableFFeedback(true),
m_initializedCOM(false), m_activated(false), m_window(window), m_hwnd(NULL), m_screenW(0), m_screenH(0),
m_getRIDevListPtr(NULL), m_getRIDevInfoPtr(NULL), m_regRIDevsPtr(NULL), m_getRIDataPtr(NULL),
m_xiGetCapabilitiesPtr(NULL), m_xiGetStatePtr(NULL), m_xiSetStatePtr(NULL), m_di8(NULL), m_di8Keyboard(NULL), m_di8Mouse(NULL)
{
// Reset initial states
memset(&m_combRawMseState, 0, sizeof(m_combRawMseState));
memset(&m_diKeyState, 0, sizeof(m_diKeyState));
memset(&m_diMseState, 0, sizeof(m_diMseState));
}
CDirectInputSystem::~CDirectInputSystem()
{
CloseKeyboardsAndMice();
CloseJoysticks();
if (m_di8)
{
m_di8->Release();
m_di8 = NULL;
if (m_initializedCOM)
CoUninitialize();
}
}
bool CDirectInputSystem::GetRegString(HKEY regKey, const char *regPath, string &str)
{
// Query to get the length
DWORD dataLen;
LONG result = RegQueryValueEx(regKey, regPath, NULL, NULL, NULL, &dataLen);
if (result != ERROR_SUCCESS)
return false;
// Retrieve the actual data
char data[MAX_PATH];
dataLen = std::min<DWORD>(MAX_PATH - 1, dataLen);
result = RegQueryValueEx(regKey, regPath, NULL, NULL, (LPBYTE)data, &dataLen);
if (result != ERROR_SUCCESS)
return false;
data[MAX_PATH - 1] = '\0';
str.assign(data);
return true;
}
bool CDirectInputSystem::GetRegDeviceName(const char *rawDevName, char *name)
{
// Check raw device string is in form that can be handled and remove initial 4-char sequence
// For XP this is: \??\TypeID#HardwareID#InstanceID#{DevicesClasses-id}
// For Vista/Win7 64bit this is: \\?\TypeID#HardwareID#InstanceID#{DevicesClasses-id}
string devNameStr(rawDevName);
if (devNameStr.find("\\??\\") != string::npos || devNameStr.find("\\\\?\\") != string::npos)
devNameStr.erase(0, 4);
else
return false;
// Append raw device string to base registry path and convert all #'s to \ in the process
string regPath = "SYSTEM\\CurrentControlSet\\Enum\\" + devNameStr;
for (size_t i = 0; i < regPath.size(); i++)
{
if (regPath[i] == '#')
regPath[i] = '\\';
}
// Remove part after last \ in path
size_t last = regPath.rfind('\\');
if (last != string::npos)
regPath = regPath.erase(last);
// Try and open registry key with this path
HKEY regKey;
LONG result = RegOpenKeyEx(HKEY_LOCAL_MACHINE, regPath.c_str(), 0, KEY_READ, &regKey);
if (result != ERROR_SUCCESS)
return false;
string parentIdStr;
// Fetch device description from registry, if it exists, and use that for name
string regStr;
if (GetRegString(regKey, "DeviceDesc", regStr))
goto Found;
// If above failed, then try looking at USB key for HID devices
RegCloseKey(regKey);
// Check it is HID device
if (devNameStr.find("HID") == string::npos)
return false;
// Get parent id, from after last \ in name
last = regPath.rfind('\\');
if (last == regPath.size() - 1 || last == string::npos)
return false;
parentIdStr = regPath.substr(last + 1);
// Open USB base key
result = RegOpenKeyEx(HKEY_LOCAL_MACHINE, "SYSTEM\\CurrentControlSet\\Enum\\USB", 0, KEY_READ, &regKey);
if (result != ERROR_SUCCESS)
return false;
// Loop through all USB devices
for (int usbIndex = 0; result == ERROR_SUCCESS; usbIndex++)
{
// Get sub-key name
char keyName[MAX_PATH];
DWORD nameLen = MAX_PATH - 1;
result = RegEnumKeyEx(regKey, usbIndex, keyName, &nameLen, NULL, NULL, NULL, NULL);
if (result == ERROR_SUCCESS)
{
// Open sub-key
HKEY subRegKey;
LONG subResult = RegOpenKeyEx(regKey, keyName, 0, KEY_READ, &subRegKey);
if (subResult != ERROR_SUCCESS)
continue;
// Loop through all sub-keys
for (int subIndex = 0; subResult == ERROR_SUCCESS; subIndex++)
{
// the next enumerated subkey and scan it
nameLen = MAX_PATH - 1;
subResult = RegEnumKeyEx(subRegKey, subIndex, keyName, &nameLen, NULL, NULL, NULL, NULL);
if (subResult == ERROR_SUCCESS)
{
// Open final key
HKEY finalRegKey;
LONG finalResult = RegOpenKeyEx(subRegKey, keyName, 0, KEY_READ, &finalRegKey);
if (finalResult != ERROR_SUCCESS)
continue;
// Get parent id prefix and see if it matches
string finalParentIdStr;
if (GetRegString(finalRegKey, "ParentIdPrefix", finalParentIdStr) && parentIdStr.compare(0, finalParentIdStr.size(), finalParentIdStr) == 0)
{
// Get device description, if it exists, and use that for name
if (GetRegString(finalRegKey, "DeviceDesc", regStr))
{
RegCloseKey(finalRegKey);
RegCloseKey(subRegKey);
goto Found;
}
}
// Close final key
RegCloseKey(finalRegKey);
}
}
// Close sub-key
RegCloseKey(subRegKey);
}
}
RegCloseKey(regKey);
return false;
Found:
// If found device description, name will be from final colon
last = regStr.rfind(';');
if (last == regStr.size() - 1 || last == string::npos)
last = 0;
else
last++;
strncpy(name, regStr.c_str() + last, MAX_NAME_LENGTH - 1);
name[MAX_NAME_LENGTH - 1] = '\0';
RegCloseKey(regKey);
return true;
}
void CDirectInputSystem::OpenKeyboardsAndMice()
{
if (m_useRawInput)
{
// If RawInput enabled, get list of available devices
UINT nDevices;
if (m_getRIDevListPtr(NULL, &nDevices, sizeof(RAWINPUTDEVICELIST)) == 0 && nDevices > 0)
{
PRAWINPUTDEVICELIST pDeviceList = new RAWINPUTDEVICELIST[nDevices];
if (pDeviceList != NULL && m_getRIDevListPtr(pDeviceList, &nDevices, sizeof(RAWINPUTDEVICELIST)) != (UINT)-1)
{
// Loop through devices backwards (since new devices are usually added at beginning)
for (int devNum = nDevices - 1; devNum >= 0; devNum--)
{
RAWINPUTDEVICELIST device = pDeviceList[devNum];
// Get device name
UINT nLength;
if (m_getRIDevInfoPtr(device.hDevice, RIDI_DEVICENAME, NULL, &nLength) != 0)
continue;
nLength = std::min<int>(MAX_NAME_LENGTH, nLength);
char name[MAX_NAME_LENGTH];
if (m_getRIDevInfoPtr(device.hDevice, RIDI_DEVICENAME, name, &nLength) == -1)
continue;
// Ignore any RDP devices
if (strstr(name, "Root#RDP_") != NULL)
continue;
// Store details and device handles for attached keyboards and mice
if (device.dwType == RIM_TYPEKEYBOARD)
{
m_rawKeyboards.push_back(device.hDevice);
KeyDetails keyDetails;
if (!GetRegDeviceName(name, keyDetails.name))
strcpy(keyDetails.name, "Unknown Keyboard");
m_keyDetails.push_back(keyDetails);
bool *pKeyState = new bool[255];
memset(pKeyState, 0, sizeof(bool) * 255);
m_rawKeyStates.push_back(pKeyState);
}
else if (device.dwType == RIM_TYPEMOUSE)
{
m_rawMice.push_back(device.hDevice);
MouseDetails mseDetails;
if (!GetRegDeviceName(name, mseDetails.name))
strcpy(mseDetails.name, "Unknown Mouse");
// TODO mseDetails.isAbsolute = ???
m_mseDetails.push_back(mseDetails);
RawMseState mseState;
memset(&mseState, 0, sizeof(mseState));
m_rawMseStates.push_back(mseState);
}
}
DebugLog("RawInput - found %d keyboards and %d mice", m_rawKeyboards.size(), m_rawMice.size());
// Check some devices were actually found
m_useRawInput = m_rawKeyboards.size() > 0 && m_rawMice.size() > 0;
}
else
{
ErrorLog("Unable to query RawInput API for attached devices (error %d) - switching to DirectInput.\n", GetLastError());
m_useRawInput = false;
}
if (pDeviceList != NULL)
delete[] pDeviceList;
}
else
{
ErrorLog("Unable to query RawInput API for attached devices (error %d) - switching to DirectInput.\n", GetLastError());
m_useRawInput = false;
}
if (m_useRawInput)
return;
}
// If get here then either RawInput disabled or getting its devices failed so default to DirectInput.
// Open DirectInput system keyboard and set its data format
HRESULT hr;
if (FAILED(hr = m_di8->CreateDevice(GUID_SysKeyboard, &m_di8Keyboard, NULL)))
{
ErrorLog("Unable to create DirectInput keyboard device (error %d) - key input will be unavailable.\n", hr);
m_di8Keyboard = NULL;
}
else if (FAILED(hr = m_di8Keyboard->SetDataFormat(&c_dfDIKeyboard)))
{
ErrorLog("Unable to set data format for DirectInput keyboard (error %d) - key input will be unavailable.\n", hr);
m_di8Keyboard->Release();
m_di8Keyboard = NULL;
}
// Open DirectInput system mouse and set its data format
if (FAILED(hr = m_di8->CreateDevice(GUID_SysMouse, &m_di8Mouse, NULL)))
{
ErrorLog("Unable to create DirectInput mouse device (error %d) - mouse input will be unavailable.\n", hr);
m_di8Mouse = NULL;
return;
}
if (FAILED(hr = m_di8Mouse->SetDataFormat(&c_dfDIMouse2)))
{
ErrorLog("Unable to set data format for DirectInput mouse (error %d) - mouse input will be unavailable.\n", hr);
m_di8Mouse->Release();
m_di8Mouse = NULL;
return;
}
// Set mouse axis mode to relative
DIPROPDWORD dipdw;
dipdw.diph.dwSize = sizeof(DIPROPDWORD);
dipdw.diph.dwHeaderSize = sizeof(DIPROPHEADER);
dipdw.diph.dwHow = DIPH_DEVICE;
dipdw.diph.dwObj = 0;
dipdw.dwData = DIPROPAXISMODE_REL;
if (FAILED(hr = m_di8Mouse->SetProperty(DIPROP_AXISMODE, &dipdw.diph)))
{
ErrorLog("Unable to set axis mode for DirectInput mouse (error %d) - mouse input will be unavailable.\n", hr);
m_di8Mouse->Release();
m_di8Mouse = NULL;
}
}
void CDirectInputSystem::ActivateKeyboardsAndMice()
{
// Sync up all mice with current cursor position
ResetMice();
if (m_useRawInput)
{
// Register for RawInput
RAWINPUTDEVICE rid[2];
// Register for keyboard input
rid[0].usUsagePage = 0x01;
rid[0].usUsage = 0x06;
rid[0].dwFlags = (m_grabMouse ? RIDEV_CAPTUREMOUSE : RIDEV_INPUTSINK) | RIDEV_NOLEGACY;
rid[0].hwndTarget = m_hwnd;
// Register for mouse input
rid[1].usUsagePage = 0x01;
rid[1].usUsage = 0x02;
rid[1].dwFlags = (m_grabMouse ? RIDEV_CAPTUREMOUSE : RIDEV_INPUTSINK) | RIDEV_NOLEGACY;
rid[1].hwndTarget = m_hwnd;
if (!m_regRIDevsPtr(rid, 2, sizeof(RAWINPUTDEVICE)))
ErrorLog("Unable to register for keyboard and mouse input with RawInput API (error %d) - keyboard and mouse input will be unavailable.\n", GetLastError());
return;
}
// Set DirectInput cooperative level of keyboard and mouse
if (m_di8Keyboard != NULL)
{
m_di8Keyboard->Unacquire();
m_di8Keyboard->SetCooperativeLevel(m_hwnd, (m_grabMouse ? DISCL_FOREGROUND : DISCL_BACKGROUND) | DISCL_NONEXCLUSIVE);
m_di8Keyboard->Acquire();
}
if (m_di8Mouse != NULL)
{
m_di8Mouse->Unacquire();
m_di8Mouse->SetCooperativeLevel(m_hwnd, (m_grabMouse ? DISCL_FOREGROUND : DISCL_BACKGROUND) | DISCL_NONEXCLUSIVE);
m_di8Mouse->Acquire();
}
}
void CDirectInputSystem::PollKeyboardsAndMice()
{
if (m_useRawInput)
{
// For RawInput, only thing to do is update wheelDir from wheelData for each mouse state. Everything else is updated via WM events.
for (vector<RawMseState>::iterator it = m_rawMseStates.begin(); it != m_rawMseStates.end(); it++)
{
if (it->wheelDelta != 0)
{
it->wheelDir = (it->wheelDelta > 0 ? 1 : -1);
it->wheelDelta = 0;
}
else
it->wheelDir = 0;
}
if (m_combRawMseState.wheelDelta != 0)
{
m_combRawMseState.wheelDir = (m_combRawMseState.wheelDelta > 0 ? 1 : -1);
m_combRawMseState.wheelDelta = 0;
}
else
m_combRawMseState.wheelDir = 0;
return;
}
// Get current keyboard state from DirectInput
HRESULT hr;
if (m_di8Keyboard != NULL)
{
if (FAILED(hr = m_di8Keyboard->Poll()))
{
hr = m_di8Keyboard->Acquire();
while (hr == DIERR_INPUTLOST)
hr = m_di8Keyboard->Acquire();
if (hr == DIERR_OTHERAPPHASPRIO || hr == DIERR_INVALIDPARAM || hr == DIERR_NOTINITIALIZED)
return;
}
// Keep track of keyboard state
m_di8Keyboard->GetDeviceState(sizeof(m_diKeyState), m_diKeyState);
}
// Get current mouse state from DirectInput
if (m_di8Mouse != NULL)
{
if (FAILED(hr = m_di8Mouse->Poll()))
{
hr = m_di8Mouse->Acquire();
while (hr == DIERR_INPUTLOST)
hr = m_di8Mouse->Acquire();
if (hr == DIERR_OTHERAPPHASPRIO || hr == DIERR_INVALIDPARAM || hr == DIERR_NOTINITIALIZED)
return;
}
// Keep track of mouse absolute axis values, clamping them at display edges, aswell as wheel direction and buttons
DIMOUSESTATE2 mseState;
m_di8Mouse->GetDeviceState(sizeof(mseState), &mseState);
m_diMseState.x = CInputSource::Clamp(m_diMseState.x + mseState.lX, m_dispX, m_dispX + m_dispW);
m_diMseState.y = CInputSource::Clamp(m_diMseState.y + mseState.lY, m_dispY, m_dispY + m_dispH);
if (mseState.lZ != 0)
{
// Z-axis is clamped to range -100 to 100 (DirectInput returns +120 & -120 for wheel delta which are scaled to +5 & -5)
LONG wheelDelta = 5 * mseState.lZ / 120;
m_diMseState.z = CInputSource::Clamp(m_diMseState.z + wheelDelta, -100, 100);
m_diMseState.wheelDir = (wheelDelta > 0 ? 1 : -1);
}
else
m_diMseState.wheelDir = 0;
memcpy(&m_diMseState.buttons, mseState.rgbButtons, sizeof(m_diMseState.buttons));
}
}
void CDirectInputSystem::CloseKeyboardsAndMice()
{
if (m_useRawInput)
{
if (m_activated)
{
// If RawInput was registered, then unregister now
RAWINPUTDEVICE rid[2];
// Unregister from keyboard input
rid[0].usUsagePage = 0x01;
rid[0].usUsage = 0x06;
rid[0].dwFlags = RIDEV_REMOVE;
rid[0].hwndTarget = m_hwnd;
// Unregister from mouse input
rid[1].usUsagePage = 0x01;
rid[1].usUsage = 0x02;
rid[1].dwFlags = RIDEV_REMOVE;
rid[1].hwndTarget = m_hwnd;
m_regRIDevsPtr(rid, 2, sizeof(RAWINPUTDEVICE));
}
// Delete storage for keyboards
for (vector<bool*>::iterator it = m_rawKeyStates.begin(); it != m_rawKeyStates.end(); it++)
delete[] *it;
m_keyDetails.clear();
m_rawKeyboards.clear();
m_rawKeyStates.clear();
// Delete storage for mice
m_mseDetails.clear();
m_rawMice.clear();
m_rawMseStates.clear();
}
// If DirectInput keyboard and mouse were created, then release them too
if (m_di8Keyboard != NULL)
{
m_di8Keyboard->Unacquire();
m_di8Keyboard->Release();
m_di8Keyboard = NULL;
}
if (m_di8Mouse != NULL)
{
m_di8Mouse->Unacquire();
m_di8Mouse->Release();
m_di8Mouse = NULL;
}
}
void CDirectInputSystem::ResetMice()
{
// Get current mouse cursor position in window
POINT p;
if (!GetCursorPos(&p) || !ScreenToClient(m_hwnd, &p))
return;
// Set all mice coords to current cursor position
if (m_useRawInput)
{
m_combRawMseState.x = p.x;
m_combRawMseState.y = p.y;
m_combRawMseState.z = 0;
for (vector<RawMseState>::iterator it = m_rawMseStates.begin(); it != m_rawMseStates.end(); it++)
{
it->x = p.x;
it->y = p.y;
it->z = 0;
}
}
m_diMseState.x = p.x;
m_diMseState.y = p.y;
m_diMseState.z = 0;
}
void CDirectInputSystem::ProcessRawInput(HRAWINPUT hInput)
{
// RawInput data event
BYTE buffer[4096];
LPBYTE pBuf = buffer;
// Get size of data structure to receive
UINT dwSize;
if (m_getRIDataPtr(hInput, RID_INPUT, NULL, &dwSize, sizeof(RAWINPUTHEADER)) != 0)
return;
if (dwSize > sizeof(buffer))
{
pBuf = new BYTE[dwSize];
if (pBuf == NULL)
return;
}
// Get data
if (m_getRIDataPtr(hInput, RID_INPUT, pBuf, &dwSize, sizeof(RAWINPUTHEADER)) == dwSize)
{
RAWINPUT *pData = (RAWINPUT*)pBuf;
if (pData->header.dwType == RIM_TYPEKEYBOARD)
{
// Keyboard event, so identify which keyboard produced event
bool *pKeyState = NULL;
size_t kbdNum;
for (kbdNum = 0; kbdNum < m_rawKeyboards.size(); kbdNum++)
{
if (m_rawKeyboards[kbdNum] == pData->header.hDevice)
{
pKeyState = m_rawKeyStates[kbdNum];
break;
}
}
// Check is a valid keyboard
if (pKeyState != NULL)
{
// Get scancode of key and whether key was pressed or released
int isRight = (pData->data.keyboard.Flags & RI_KEY_E0);
UINT8 scanCode = (pData->data.keyboard.MakeCode & 0x7f) | (isRight ? 0x80 : 0x00);
bool pressed = !(pData->data.keyboard.Flags & RI_KEY_BREAK);
// Store current state for key
if (scanCode != 0xAA)
pKeyState[scanCode] = pressed;
}
}
else if (pData->header.dwType == RIM_TYPEMOUSE)
{
// Mouse event, so identify which mouse produced event
RawMseState *pMseState = NULL;
size_t mseNum;
for (mseNum = 0; mseNum < m_rawMice.size(); mseNum++)
{
if (m_rawMice[mseNum] == pData->header.hDevice)
{
pMseState = &m_rawMseStates[mseNum];
break;
}
}
// Check is a valid mouse
if (pMseState != NULL)
{
// Get X- & Y-axis data
LONG lx = pData->data.mouse.lLastX;
LONG ly = pData->data.mouse.lLastY;
if (pData->data.mouse.usFlags & MOUSE_MOVE_ABSOLUTE)
{
// If data is absolute, then scale source values (which range 0 to 65535) to screen coordinates and convert
// to be relative to game window origin
POINT p;
p.x = CInputSource::Scale(lx, 0, 0xFFFF, 0, m_screenW);
p.y = CInputSource::Scale(ly, 0, 0xFFFF, 0, m_screenH);
if (ScreenToClient(m_hwnd, &p))
{
pMseState->x = p.x;
pMseState->y = p.y;
}
// Also update combined state
m_combRawMseState.x = pMseState->x;
m_combRawMseState.y = pMseState->y;
}
else
{
// If data is relative, then keep track of absolute position, clamping it at display edges
pMseState->x = CInputSource::Clamp(pMseState->x + lx, m_dispX, m_dispX + m_dispW);
pMseState->y = CInputSource::Clamp(pMseState->y + ly, m_dispY, m_dispY + m_dispH);
// Also update combined state
m_combRawMseState.x = CInputSource::Clamp(m_combRawMseState.x + lx, m_dispX, m_dispX + m_dispW);
m_combRawMseState.y = CInputSource::Clamp(m_combRawMseState.y + ly, m_dispY, m_dispY + m_dispH);
}
// Get button flags and wheel delta (RawInput returns +120 & -120 for the latter which are scaled to +5 & -5)
USHORT butFlags = pData->data.mouse.usButtonFlags;
LONG wheelDelta = 5 * (SHORT)pData->data.mouse.usButtonData / 120;
// Update Z-axis (wheel) value
if (butFlags & RI_MOUSE_WHEEL)
{
// Z-axis is clamped to range -100 to 100
pMseState->z = CInputSource::Clamp(pMseState->z + wheelDelta, -100, 100);
pMseState->wheelDelta += wheelDelta;
}
// Keep track of buttons pressed/released
if (butFlags & RI_MOUSE_LEFT_BUTTON_DOWN) pMseState->buttons |= 1;
else if (butFlags & RI_MOUSE_LEFT_BUTTON_UP) pMseState->buttons &= ~1;
if (butFlags & RI_MOUSE_MIDDLE_BUTTON_DOWN) pMseState->buttons |= 2;
else if (butFlags & RI_MOUSE_MIDDLE_BUTTON_UP) pMseState->buttons &= ~2;
if (butFlags & RI_MOUSE_RIGHT_BUTTON_DOWN) pMseState->buttons |= 4;
else if (butFlags & RI_MOUSE_RIGHT_BUTTON_UP) pMseState->buttons &= ~4;
if (butFlags & RI_MOUSE_BUTTON_4_DOWN) pMseState->buttons |= 8;
else if (butFlags & RI_MOUSE_BUTTON_4_UP) pMseState->buttons &= ~8;
if (butFlags & RI_MOUSE_BUTTON_5_DOWN) pMseState->buttons |= 16;
else if (butFlags & RI_MOUSE_BUTTON_5_UP) pMseState->buttons &= ~16;
// Also update combined state for wheel axis and buttons
if (butFlags & RI_MOUSE_WHEEL)
{
// Z-axis is clamped to range -100 to 100
m_combRawMseState.z = CInputSource::Clamp(m_combRawMseState.z + wheelDelta, -100, 100);
m_combRawMseState.wheelDelta += wheelDelta;
}
m_combRawMseState.buttons = 0;
for (vector<RawMseState>::iterator it = m_rawMseStates.begin(); it != m_rawMseStates.end(); it++)
m_combRawMseState.buttons |= it->buttons;
}
}
}
if (pBuf != buffer)
delete[] pBuf;
}
void CDirectInputSystem::OpenJoysticks()
{
// Get the info about all attached joystick devices
DIEnumDevsContext diDevsContext;
diDevsContext.infos = &m_diJoyInfos;
diDevsContext.useXInput = m_useXInput;
HRESULT hr;
if (FAILED(hr = m_di8->EnumDevices(DI8DEVCLASS_GAMECTRL, DI8EnumDevicesCallback, &diDevsContext, DIEDFL_ATTACHEDONLY)))
return;
// Loop through those found
int joyNum = 0;
int xNum = 0;
for (vector<DIJoyInfo>::iterator it = m_diJoyInfos.begin(); it != m_diJoyInfos.end(); it++)
{
joyNum++;
JoyDetails joyDetails;
memset(&joyDetails, 0, sizeof(joyDetails));
// See if can use XInput for device
if (it->isXInput)
{
// If so, set joystick details (currently XBox controller is only gamepad handled by XInput and so its capabilities are fixed)
sprintf(joyDetails.name, "Xbox 360 Controller %d (via XInput)", (xNum + 1));
joyDetails.numAxes = 6; // Left & right triggers are mapped to axes in addition to the two analog sticks, giving a total of 6 axes
joyDetails.numPOVs = 1; // Digital D-pad
joyDetails.numButtons = 10;
joyDetails.hasFFeedback = m_enableFFeedback;
joyDetails.hasAxis[AXIS_X] = true;
joyDetails.hasAxis[AXIS_Y] = true;
joyDetails.hasAxis[AXIS_Z] = true;
joyDetails.hasAxis[AXIS_RX] = true;
joyDetails.hasAxis[AXIS_RY] = true;
joyDetails.hasAxis[AXIS_RZ] = true;
joyDetails.hasAxis[AXIS_S1] = false;
joyDetails.hasAxis[AXIS_S2] = false;
joyDetails.axisHasFF[AXIS_X] = true; // Force feedback simulated on left and right sticks
joyDetails.axisHasFF[AXIS_Y] = true;
joyDetails.axisHasFF[AXIS_Z] = false;
joyDetails.axisHasFF[AXIS_RX] = true;
joyDetails.axisHasFF[AXIS_RY] = true;
joyDetails.axisHasFF[AXIS_RZ] = false;
joyDetails.axisHasFF[AXIS_S1] = false;
joyDetails.axisHasFF[AXIS_S2] = false;
// Keep track of XInput device number
it->xInputNum = xNum++;
}
else
{
// Otherwise, open joystick with DirectInput for given GUID and set its data format
LPDIRECTINPUTDEVICE8 joystick;
if (FAILED(hr = m_di8->CreateDevice(it->guid, &joystick, NULL)))
{
ErrorLog("Unable to create DirectInput joystick device %d (error %d) - skipping joystick.\n", joyNum, hr);
continue;
}
if (FAILED(hr = joystick->SetDataFormat(&c_dfDIJoystick2)))
{
ErrorLog("Unable to set data format for DirectInput joystick %d (error %d) - skipping joystick.\n", joyNum, hr);
joystick->Release();
continue;
}
// Get joystick's capabilities
DIDEVCAPS devCaps;
devCaps.dwSize = sizeof(DIDEVCAPS);
if (FAILED(hr = joystick->GetCapabilities(&devCaps)))
{
ErrorLog("Unable to query capabilities of DirectInput joystick %d (error %d) - skipping joystick.\n", joyNum, hr);
joystick->Release();
continue;
}
// Gather joystick details (name, num POVs & buttons, which axes are available and whether force feedback is available)
DIPROPSTRING didps;
didps.diph.dwSize = sizeof(DIPROPSTRING);
didps.diph.dwHeaderSize = sizeof(DIPROPHEADER);
didps.diph.dwHow = DIPH_DEVICE;
didps.diph.dwObj = 0;
if (FAILED(hr = joystick->GetProperty(DIPROP_INSTANCENAME, &didps.diph)))
{
ErrorLog("Unable to get name of DirectInput joystick %d (error %d) - skipping joystick.\n", joyNum, hr);
joystick->Release();
continue;
}
// DInput returns name as Unicode, convert to ASCII
int len = std::min<int>(MAX_NAME_LENGTH, (int)wcslen(didps.wsz) + 1);
WideCharToMultiByte(CP_ACP, 0, didps.wsz, len, joyDetails.name, len, NULL, NULL);
joyDetails.name[MAX_NAME_LENGTH - 1] = '\0';
joyDetails.numPOVs = devCaps.dwPOVs;
joyDetails.numButtons = devCaps.dwButtons;
// Enumerate axes
DIEnumObjsContext diObjsContext;
memset(&diObjsContext, 0, sizeof(diObjsContext));
diObjsContext.joyDetails = &joyDetails;
if (FAILED(hr = joystick->EnumObjects(DI8EnumObjectsCallback, &diObjsContext, DIDFT_ALL)))
{
ErrorLog("Unable to enumerate axes of DirectInput joystick %d (error %d) - skipping joystick.\n", joyNum, hr);
joystick->Release();
continue;
}
// If enumeration failed for some reason then include all possible joystick axes so that no axis is left off due to error
if (diObjsContext.enumError)
{
for (int axisNum = 0; axisNum < NUM_JOY_AXES; axisNum++)
{
if (!joyDetails.hasAxis[axisNum])
{
joyDetails.hasAxis[axisNum] = true;
joyDetails.axisHasFF[axisNum] = false;
char *axisName = joyDetails.axisName[axisNum];
strcpy(axisName, CInputSystem::GetDefaultAxisName(axisNum));
}
}
}
// Count number of axes
joyDetails.numAxes = 0;
for (int axisNum = 0; axisNum < NUM_JOY_AXES; axisNum++)
joyDetails.numAxes += joyDetails.hasAxis[axisNum];
// See if force feedback enabled and is available for joystick
if (m_enableFFeedback && (devCaps.dwFlags & DIDC_FORCEFEEDBACK))
{
// If so, see what types of effects are available and for which axes
if (FAILED(hr = joystick->EnumEffects(DI8EnumEffectsCallback, &joyDetails, DIEFT_ALL)))
ErrorLog("Unable to enumerate effects of DirectInput joystick %d (error %d) - force feedback will be unavailable for joystick.\n", joyNum, hr);
}
// Configure axes, if any
if (joyDetails.numAxes > 0)
{
// Set axis range to be from -32768 to 32767
DIPROPRANGE didpr;
didpr.diph.dwSize = sizeof(DIPROPRANGE);
didpr.diph.dwHeaderSize = sizeof(DIPROPHEADER);
didpr.diph.dwHow = DIPH_DEVICE;
didpr.diph.dwObj = 0;
didpr.lMin = -32768;
didpr.lMax = 32767;
if (FAILED(hr = joystick->SetProperty(DIPROP_RANGE, &didpr.diph)))
{
ErrorLog("Unable to set axis range of DirectInput joystick %d (error %d) - skipping joystick.\n", joyNum, hr);
joystick->Release();
continue;
}
// Set axis mode to absolute
DIPROPDWORD dipdw;
dipdw.diph.dwSize = sizeof(DIPROPDWORD);
dipdw.diph.dwHeaderSize = sizeof(DIPROPHEADER);
dipdw.diph.dwHow = DIPH_DEVICE;
dipdw.diph.dwObj = 0;
dipdw.dwData = DIPROPAXISMODE_ABS;
if (FAILED(hr = joystick->SetProperty(DIPROP_AXISMODE, &dipdw.diph)))
{
ErrorLog("Unable to set axis mode of DirectInput joystick %d (error %d) - skipping joystick.\n", joyNum, hr);
joystick->Release();
continue;
}
// Turn off deadzone as handled by this class
dipdw.dwData = 0;
if (FAILED(hr = joystick->SetProperty(DIPROP_DEADZONE, &dipdw.diph)))
{
ErrorLog("Unable to set deadzone of DirectInput joystick %d (error %d) - skipping joystick.\n", joyNum, hr);
joystick->Release();
continue;
}
// Turn off saturation as handle by this class
dipdw.dwData = 10000;
if (FAILED(hr = joystick->SetProperty(DIPROP_SATURATION, &dipdw.diph)))
{
ErrorLog("Unable to set saturation of DirectInput joystick %d (error %d) - skipping joystick.\n", joyNum, hr);
joystick->Release();
continue;
}
// If joystick has force feedback capabilities then disable auto-center
if (joyDetails.hasFFeedback)
{
dipdw.dwData = false;
if (FAILED(hr = joystick->SetProperty(DIPROP_AUTOCENTER, &dipdw.diph)))
{
ErrorLog("Unable to unset auto-center of DirectInput joystick %d (error %d) - force feedback will be unavailable for joystick.\n", joyNum, hr);
joyDetails.hasFFeedback = false;
}
}
}
// Keep track of DirectInput device number
it->dInputNum = m_di8Joysticks.size();
m_di8Joysticks.push_back(joystick);
}
// Create initial blank joystick state
DIJOYSTATE2 joyState;
memset(&joyState, 0, sizeof(joyState));
for (int povNum = 0; povNum < 4; povNum++)
joyState.rgdwPOV[povNum] = -1;
m_joyDetails.push_back(joyDetails);
m_diJoyStates.push_back(joyState);
}
}
void CDirectInputSystem::ActivateJoysticks()
{
// Set DirectInput cooperative level of joysticks
unsigned joyNum = 0;
for (vector<DIJoyInfo>::iterator it = m_diJoyInfos.begin(); it != m_diJoyInfos.end(); it++)
{
if (!it->isXInput)
{
LPDIRECTINPUTDEVICE8 joystick = m_di8Joysticks[it->dInputNum];
joystick->Unacquire();
if (m_grabMouse)
joystick->SetCooperativeLevel(m_hwnd, DISCL_EXCLUSIVE | DISCL_FOREGROUND);
else
joystick->SetCooperativeLevel(m_hwnd, DISCL_NONEXCLUSIVE | DISCL_BACKGROUND);
joystick->Acquire();
}
joyNum++;
}
}
void CDirectInputSystem::PollJoysticks()
{
// Get current joystick states from XInput and DirectInput
int i = 0;
for (vector<DIJoyInfo>::iterator it = m_diJoyInfos.begin(); it != m_diJoyInfos.end(); it++)
{
LPDIJOYSTATE2 pJoyState = &m_diJoyStates[i++];
HRESULT hr;
if (it->isXInput)
{
// Use XInput to query joystick
XINPUT_STATE xState;
memset(&xState, 0, sizeof(xState));
if (FAILED(hr = m_xiGetStatePtr(it->xInputNum, &xState)))
{
memset(pJoyState, 0, sizeof(DIJOYSTATE2));
continue;
}
// Map XInput state onto joystick's DirectInput state object
XINPUT_GAMEPAD gamepad = xState.Gamepad;
pJoyState->lX = (LONG)gamepad.sThumbLX,
pJoyState->lY = (LONG)-gamepad.sThumbLY;
pJoyState->lZ = (LONG)CInputSource::Scale(gamepad.bLeftTrigger, 0, 255, 0, 32767);
pJoyState->lRx = (LONG)gamepad.sThumbRX;
pJoyState->lRy = (LONG)-gamepad.sThumbRY;
pJoyState->lRz = (LONG)CInputSource::Scale(gamepad.bRightTrigger, 0, 255, 0, 32767);
WORD buttons = gamepad.wButtons;
int dUp = (buttons & XINPUT_GAMEPAD_DPAD_UP);
int dDown = (buttons & XINPUT_GAMEPAD_DPAD_DOWN);
int dLeft = (buttons & XINPUT_GAMEPAD_DPAD_LEFT);
int dRight = (buttons & XINPUT_GAMEPAD_DPAD_RIGHT);
if (dUp)
{
if (dLeft) pJoyState->rgdwPOV[0] = 31500;
else if (dRight) pJoyState->rgdwPOV[0] = 4500;
else pJoyState->rgdwPOV[0] = 0;
}
else if (dDown)
{
if (dLeft) pJoyState->rgdwPOV[0] = 22500;
else if (dRight) pJoyState->rgdwPOV[0] = 13500;
else pJoyState->rgdwPOV[0] = 18000;
}
else if (dLeft) pJoyState->rgdwPOV[0] = 27000;
else if (dRight) pJoyState->rgdwPOV[0] = 9000;
else pJoyState->rgdwPOV[0] = -1;
pJoyState->rgbButtons[0] = !!(buttons & XINPUT_GAMEPAD_A);
pJoyState->rgbButtons[1] = !!(buttons & XINPUT_GAMEPAD_B);
pJoyState->rgbButtons[2] = !!(buttons & XINPUT_GAMEPAD_X);
pJoyState->rgbButtons[3] = !!(buttons & XINPUT_GAMEPAD_Y);
pJoyState->rgbButtons[4] = !!(buttons & XINPUT_GAMEPAD_LEFT_SHOULDER);
pJoyState->rgbButtons[5] = !!(buttons & XINPUT_GAMEPAD_RIGHT_SHOULDER);
pJoyState->rgbButtons[6] = !!(buttons & XINPUT_GAMEPAD_BACK);
pJoyState->rgbButtons[7] = !!(buttons & XINPUT_GAMEPAD_START);
pJoyState->rgbButtons[8] = !!(buttons & XINPUT_GAMEPAD_LEFT_THUMB);
pJoyState->rgbButtons[9] = !!(buttons & XINPUT_GAMEPAD_RIGHT_THUMB);
}
else
{
// Use DirectInput to query joystick
LPDIRECTINPUTDEVICE8 joystick = m_di8Joysticks[it->dInputNum];
if (FAILED(hr = joystick->Poll()))
{
hr = joystick->Acquire();
while (hr == DIERR_INPUTLOST)
hr = joystick->Acquire();
if (hr == DIERR_OTHERAPPHASPRIO || hr == DIERR_INVALIDPARAM || hr == DIERR_NOTINITIALIZED)
{
memset(pJoyState, 0, sizeof(DIJOYSTATE2));
continue;
}
}
// Update joystick's DirectInput state
joystick->GetDeviceState(sizeof(DIJOYSTATE2), pJoyState);
}
}
}
void CDirectInputSystem::CloseJoysticks()
{
// Release any DirectInput force feedback effects that were created
for (vector<DIJoyInfo>::iterator it = m_diJoyInfos.begin(); it != m_diJoyInfos.end(); it++)
{
for (unsigned axisNum = 0; axisNum < NUM_JOY_AXES; axisNum++)
{
for (unsigned effNum = 0; effNum < NUM_FF_EFFECTS; effNum++)
{
if (it->dInputEffects[axisNum][effNum] != NULL)
{
it->dInputEffects[axisNum][effNum]->Release();
it->dInputEffects[axisNum][effNum] = NULL;
}
}
}
}
// Release each DirectInput joystick
for (vector<LPDIRECTINPUTDEVICE8>::iterator it = m_di8Joysticks.begin(); it != m_di8Joysticks.end(); it++)
{
(*it)->Unacquire();
(*it)->Release();
}
m_joyDetails.clear();
m_diJoyInfos.clear();
m_diJoyStates.clear();
m_di8Joysticks.clear();
}
HRESULT CDirectInputSystem::CreateJoystickEffect(LPDIRECTINPUTDEVICE8 joystick, int axisNum, ForceFeedbackCmd ffCmd, LPDIRECTINPUTEFFECT *pEffect)
{
// Map axis number to DI object offset
DWORD axisOfs;
switch (axisNum)
{
case AXIS_X: axisOfs = DIJOFS_X; break;
case AXIS_Y: axisOfs = DIJOFS_Y; break;
case AXIS_Z: axisOfs = DIJOFS_Z; break;
case AXIS_RX: axisOfs = DIJOFS_RX; break;
case AXIS_RY: axisOfs = DIJOFS_RY; break;
case AXIS_RZ: axisOfs = DIJOFS_RZ; break;
case AXIS_S1: axisOfs = DIJOFS_SLIDER(0); break;
case AXIS_S2: axisOfs = DIJOFS_SLIDER(1); break;
default: return E_FAIL;
}
DWORD dwAxis = axisOfs;
LONG lDirection = 0;
DICONSTANTFORCE dicf;
DICONDITION dic;
DIPERIODIC dip;
DIENVELOPE die;
GUID guid;
// Set common effects parameters
DIEFFECT eff;
memset(&eff, 0, sizeof(eff));
eff.dwSize = sizeof(DIEFFECT);
eff.dwFlags = DIEFF_CARTESIAN | DIEFF_OBJECTOFFSETS;
eff.dwTriggerButton = DIEB_NOTRIGGER;
eff.dwTriggerRepeatInterval = 0;
eff.dwGain = DI_FFNOMINALMAX;
eff.cAxes = 1;
eff.rgdwAxes = &dwAxis;
eff.rglDirection = &lDirection;
eff.dwDuration = INFINITE;
eff.dwStartDelay = 0;
eff.lpEnvelope = NULL;
// Set specific effects parameters
switch (ffCmd.id)
{
case FFStop:
return E_FAIL;
case FFConstantForce:
guid = GUID_ConstantForce;
dicf.lMagnitude = 0;
eff.cbTypeSpecificParams = sizeof(DICONSTANTFORCE);
eff.lpvTypeSpecificParams = &dicf;
break;
case FFSelfCenter:
guid = GUID_Spring;
dic.lOffset = 0; // offset is +ve/-ve bias, 0 = evenly spread in both directions
dic.lPositiveCoefficient = 0;
dic.lNegativeCoefficient = 0;
dic.dwPositiveSaturation = DI_FFNOMINALMAX;
dic.dwNegativeSaturation = DI_FFNOMINALMAX;
dic.lDeadBand = (LONG)(0.05 * DI_FFNOMINALMAX); // 5% deadband
eff.cbTypeSpecificParams = sizeof(DICONDITION);
eff.lpvTypeSpecificParams = &dic;
break;
case FFFriction:
guid = GUID_Friction;
dic.lOffset = 0;
dic.lPositiveCoefficient = 0;
dic.lNegativeCoefficient = 0;
dic.dwPositiveSaturation = DI_FFNOMINALMAX;
dic.dwNegativeSaturation = DI_FFNOMINALMAX;
dic.lDeadBand = 0; // 0% deadband
eff.cbTypeSpecificParams = sizeof(DICONDITION);
eff.lpvTypeSpecificParams = &dic;
break;
case FFVibrate:
guid = GUID_Sine;
dip.dwMagnitude = 0;
dip.lOffset = 0;
dip.dwPhase = 0;
dip.dwPeriod = (DWORD)(0.05 * DI_SECONDS); // 1/20th second
eff.cbTypeSpecificParams = sizeof(DIPERIODIC);
eff.lpvTypeSpecificParams = &dip;
break;
}
joystick->Acquire();
HRESULT hr;
if (FAILED(hr = joystick->CreateEffect(guid, &eff, pEffect, NULL)))
return hr;
if (*pEffect == NULL)
return E_FAIL;
(*pEffect)->Start(1, 0);
return S_OK;
}
void CDirectInputSystem::LoadXInputDLL()
{
// Try each of the XInput DLLs
HMODULE xInput = NULL;
for (auto filename: s_xinput_dlls)
{
xInput = LoadLibrary(filename);
if (xInput != NULL)
break;
}
if (xInput != NULL)
{
m_xiGetCapabilitiesPtr = (XInputGetCapabilitiesPtr)GetProcAddress(xInput, "XInputGetCapabilities");
m_xiGetStatePtr = (XInputGetStatePtr)GetProcAddress(xInput, "XInputGetState");
m_xiSetStatePtr = (XInputSetStatePtr)GetProcAddress(xInput, "XInputSetState");
m_useXInput = m_xiGetCapabilitiesPtr != NULL && m_xiGetStatePtr != NULL && m_xiSetStatePtr != NULL;
}
else
m_useXInput = false;
if (!m_useXInput)
{
ErrorLog("XInput not found. Tried: %s.", Util::Format(", ").Join(s_xinput_dlls_a).str().c_str());
ErrorLog("Falling back on DirectInput.");
}
}
bool CDirectInputSystem::InitializeSystem()
{
if (m_useRawInput)
{
// Dynamically load RawInput API
HMODULE user32 = LoadLibrary(TEXT("user32.dll"));
if (user32 != NULL)
{
m_getRIDevListPtr = (GetRawInputDeviceListPtr)GetProcAddress(user32, "GetRawInputDeviceList");
m_getRIDevInfoPtr = (GetRawInputDeviceInfoPtr)GetProcAddress(user32, "GetRawInputDeviceInfoA");
m_regRIDevsPtr = (RegisterRawInputDevicesPtr)GetProcAddress(user32, "RegisterRawInputDevices");
m_getRIDataPtr = (GetRawInputDataPtr)GetProcAddress(user32, "GetRawInputData");
m_useRawInput = m_getRIDevListPtr != NULL && m_getRIDevInfoPtr != NULL && m_regRIDevsPtr != NULL && m_getRIDataPtr != NULL;
}
else
m_useRawInput = false;
if (m_useRawInput)
{
// Get screen resolution (needed for absolute mouse devices)
DEVMODEA settings = { 0 };
if (!EnumDisplaySettings(NULL, ENUM_CURRENT_SETTINGS, &settings))
{
ErrorLog("Unable to read current display settings\n");
return false;
}
m_screenW = settings.dmPelsWidth;
m_screenH = settings.dmPelsHeight;
}
else
ErrorLog("Unable to initialize RawInput API (library hooks are not available) - switching to DirectInput.\n");
}
if (m_useXInput)
{
// Dynamically load XInput API
LoadXInputDLL();//LoadLibrary(TEXT(XINPUT_DLL_A));
}
// Dynamically create DirectInput8 via COM, rather than statically linking to dinput8.dll
// TODO - if fails, try older versions of DirectInput
HRESULT hr;
if (SUCCEEDED(hr = CoInitialize(NULL)))
m_initializedCOM = true;
else
{
// CoInitialize fails if called from managed context (ie .NET debugger) so check for this and ignore this error
if (hr != RPC_E_CHANGED_MODE)
{
ErrorLog("Unable to initialize COM (error %d).\n", hr);
return false;
}
}
if (FAILED(hr = CoCreateInstance(CLSID_DirectInput8, NULL, CLSCTX_INPROC_SERVER, IID_IDirectInput8A, (LPVOID*)&m_di8)))
{
ErrorLog("Unable to initialize DirectInput API (error %d) - is DirectX 8 or later installed?\n", hr);
if (m_initializedCOM)
CoUninitialize();
return false;
}
if (FAILED(hr = m_di8->Initialize(GetModuleHandle(NULL), DIRECTINPUT_VERSION)))
{
ErrorLog("Unable to initialize DirectInput API (error %d) - is DirectX 8 or later installed?\n", hr);
m_di8->Release();
m_di8 = NULL;
if (m_initializedCOM)
CoUninitialize();
return false;
}
// Open all devices
OpenKeyboardsAndMice();
OpenJoysticks();
return true;
}
int CDirectInputSystem::GetKeyIndex(const char *keyName)
{
for (int i = 0; i < NUM_DI_KEYS; i++)
{
if (stricmp(keyName, s_keyMap[i].keyName) == 0)
return i;
}
return -1;
}
const char *CDirectInputSystem::GetKeyName(int keyIndex)
{
if (keyIndex < 0 || keyIndex >= NUM_DI_KEYS)
return NULL;
return s_keyMap[keyIndex].keyName;
}
bool CDirectInputSystem::IsKeyPressed(int kbdNum, int keyIndex)
{
// Get DI key code (scancode) for given key index
int diKey = s_keyMap[keyIndex].diKey;
if (m_useRawInput)
{
// For RawInput, check if key is currently pressed for given keyboard number
bool *keyState = m_rawKeyStates[kbdNum];
return !!keyState[diKey];
}
// For DirectInput, just check common keyboard state
return !!(m_diKeyState[diKey] & 0x80);
}
int CDirectInputSystem::GetMouseAxisValue(int mseNum, int axisNum)
{
if (m_useRawInput)
{
// For RawInput, get combined or individual mouse state and return value for given axis
// The cursor is always hidden when using RawInput, so it does not matter if these values don't match with the cursor (with multiple
// mice the cursor is irrelevant anyway)
RawMseState *pMseState = (mseNum == ANY_MOUSE ? &m_combRawMseState : &m_rawMseStates[mseNum]);
switch (axisNum)
{
case AXIS_X: return pMseState->x;
case AXIS_Y: return pMseState->y;
case AXIS_Z: return pMseState->z;
default: return 0;
}
}
// For DirectInput, for X- and Y-axes just use cursor position within window if available (so that mouse movements sync with the cursor)
if (axisNum == AXIS_X || axisNum == AXIS_Y)
{
POINT p;
if (GetCursorPos(&p) && ScreenToClient(m_hwnd, &p))
return (axisNum == AXIS_X ? p.x : p.y);
}
// Otherwise, return the raw DirectInput axis values
switch (axisNum)
{
case AXIS_X: return m_diMseState.x;
case AXIS_Y: return m_diMseState.y;
case AXIS_Z: return m_diMseState.z;
default: return 0;
}
}
int CDirectInputSystem::GetMouseWheelDir(int mseNum)
{
if (m_useRawInput)
{
// For RawInput, return the wheel value for combined or individual mouse state
return (mseNum == ANY_MOUSE ? m_combRawMseState.wheelDir : m_rawMseStates[mseNum].wheelDir);
}
// For DirectInput just return the common wheel value
return m_diMseState.wheelDir;
}
bool CDirectInputSystem::IsMouseButPressed(int mseNum, int butNum)
{
if (m_useRawInput)
{
// For RawInput, return the button state for combined or individual mouse state
return !!((mseNum == ANY_MOUSE ? m_combRawMseState.buttons : m_rawMseStates[mseNum].buttons) & (1<<butNum));
}
// For DirectInput just return the common button state (taking care with the middle and right mouse buttons
// which DirectInput numbers 2 and 1 respectively, rather than 1 and 2)
if (butNum == 1) butNum = 2;
else if (butNum == 2) butNum = 1;
return (butNum < 5 ? !!(m_diMseState.buttons[butNum] & 0x80) : false);
}
int CDirectInputSystem::GetJoyAxisValue(int joyNum, int axisNum)
{
// Return raw value for given joystick number and axis (values range from -32768 to 32767)
switch (axisNum)
{
case AXIS_X: return (int)m_diJoyStates[joyNum].lX;
case AXIS_Y: return (int)m_diJoyStates[joyNum].lY;
case AXIS_Z: return (int)m_diJoyStates[joyNum].lZ;
case AXIS_RX: return (int)m_diJoyStates[joyNum].lRx;
case AXIS_RY: return (int)m_diJoyStates[joyNum].lRy;
case AXIS_RZ: return (int)m_diJoyStates[joyNum].lRz;
case AXIS_S1: return (int)m_diJoyStates[joyNum].rglSlider[0];
case AXIS_S2: return (int)m_diJoyStates[joyNum].rglSlider[1];
default: return 0;
}
}
bool CDirectInputSystem::IsJoyPOVInDir(int joyNum, int povNum, int povDir)
{
// Check if POV-hat value for given joystick number and POV is pointing in required direction
int povVal = m_diJoyStates[joyNum].rgdwPOV[povNum] / 100; // DirectInput value is angle of POV-hat in 100ths of a degree
switch (povDir)
{
case POV_UP: return povVal == 315 || povVal == 0 || povVal == 45;
case POV_DOWN: return povVal == 135 || povVal == 180 || povVal == 225;
case POV_RIGHT: return povVal == 45 || povVal == 90 || povVal == 135;
case POV_LEFT: return povVal == 225 || povVal == 270 || povVal == 315;
default: return false;
}
}
bool CDirectInputSystem::IsJoyButPressed(int joyNum, int butNum)
{
// Get joystick state for given joystick and return current button value for given button number
return !!m_diJoyStates[joyNum].rgbButtons[butNum];
}
bool CDirectInputSystem::ProcessForceFeedbackCmd(int joyNum, int axisNum, ForceFeedbackCmd ffCmd)
{
DIJoyInfo *pInfo = &m_diJoyInfos[joyNum];
HRESULT hr;
if (pInfo->isXInput)
{
if (axisNum != AXIS_X && axisNum != AXIS_Y && axisNum != AXIS_RX && axisNum != AXIS_RY)
return false;
XINPUT_VIBRATION vibration;
bool negForce;
float absForce;
float threshold;
switch (ffCmd.id)
{
case FFStop:
// Stop command halts all vibration
pInfo->xiConstForceLeft = 0;
pInfo->xiConstForceRight = 0;
pInfo->xiVibrateBoth = 0;
break;
case FFConstantForce:
{
// Check if constant force effect is disabled
unsigned xInputConstForceMax = m_config["XInputConstForceMax"].ValueAs<unsigned>();
if (xInputConstForceMax == 0)
return false;
// Constant force effect is mapped to either left or right vibration motor depending on its direction
negForce = ffCmd.force < 0.0f;
absForce = (negForce ? -ffCmd.force : ffCmd.force);
threshold = (float)m_config["XInputConstForceThreshold"].ValueAs<unsigned>() / 100.0f;
// Check if constant force effect is being stopped or is below threshold
if (absForce == 0.0f || absForce < threshold)
{
// If so, stop vibration due to force effect
pInfo->xiConstForceLeft = 0;
pInfo->xiConstForceRight = 0;
}
else if (negForce)
{
// If force is negative (to left), set left motor vibrating
pInfo->xiConstForceLeft = (WORD)(absForce * (float)(xInputConstForceMax * XI_VIBRATE_SCALE));
pInfo->xiConstForceRight = 0;
}
else
{
// If force positive (to right), set right motor vibrating
pInfo->xiConstForceLeft = 0;
pInfo->xiConstForceRight = (WORD)(absForce * (float)(xInputConstForceMax * XI_VIBRATE_SCALE));
}
break;
}
case FFSelfCenter:
case FFFriction:
// Self center and friction effects are not mapped
return false;
case FFVibrate:
{
// Check if vibration effect is disabled
unsigned xInputVibrateMax = m_config["XInputVibrateMax"].ValueAs<unsigned>();
if (xInputVibrateMax == 0)
return false;
// Check if vibration effect is being stopped
if (ffCmd.force == 0.0f)
{
// If so, stop vibration due to vibration effect
pInfo->xiVibrateBoth = 0;
}
else
{
// Otherwise, set both motors vibrating
pInfo->xiVibrateBoth = (WORD)(ffCmd.force * (float)(xInputVibrateMax * XI_VIBRATE_SCALE));
}
break;
}
default:
// Unknown feedback command
return false;
}
// Combine vibration speeds from both constant force effect and vibration effect and set motors in action
vibration.wLeftMotorSpeed = std::min<WORD>(pInfo->xiConstForceLeft + pInfo->xiVibrateBoth, XI_VIBRATE_MAX);
vibration.wRightMotorSpeed = std::min<WORD>(pInfo->xiConstForceRight + pInfo->xiVibrateBoth, XI_VIBRATE_MAX);
return SUCCEEDED(hr = m_xiSetStatePtr(pInfo->xInputNum, &vibration));
}
else
{
LPDIRECTINPUTDEVICE8 joystick = m_di8Joysticks[pInfo->dInputNum];
// See if command is to stop all force feedback, if so send appropriate command
if (ffCmd.id == FFStop)
return SUCCEEDED(hr = joystick->SendForceFeedbackCommand(DISFFC_STOPALL));
// Create effect for given axis if has not already been created
int effNum = (int)ffCmd.id;
LPDIRECTINPUTEFFECT *pEffect = &pInfo->dInputEffects[axisNum][effNum];
if ((*pEffect) == NULL)
{
if (FAILED(hr = CreateJoystickEffect(joystick, axisNum, ffCmd, pEffect)))
return false;
}
LONG lDirection = 0;
DICONSTANTFORCE dicf;
DICONDITION dic;
DIPERIODIC dip;
DIENVELOPE die;
// Set common parameters
DIEFFECT eff;
memset(&eff, 0, sizeof(eff));
eff.dwSize = sizeof(DIEFFECT);
eff.dwFlags = DIEFF_CARTESIAN | DIEFF_OBJECTOFFSETS;
eff.cAxes = 1;
eff.rglDirection = &lDirection;
eff.dwStartDelay = 0;
eff.lpEnvelope = NULL;
// Set command specific parameters
LONG lFFMag;
DWORD dFFMag;
switch (ffCmd.id)
{
case FFConstantForce:
//printf("FFConstantForce %0.2f\n", 100.0f * ffCmd.force);
if (ffCmd.force >= 0.0f)
{
unsigned dInputConstForceRightMax = m_config["DirectInputConstForceRightMax"].ValueAs<unsigned>();
if (dInputConstForceRightMax == 0)
return false;
lFFMag = (LONG)(-ffCmd.force * (float)(dInputConstForceRightMax * DI_EFFECTS_SCALE)); // Invert sign for DirectInput effect
dicf.lMagnitude = std::max<LONG>(lFFMag, -DI_EFFECTS_MAX);
}
else
{
unsigned dInputConstForceLeftMax = m_config["DirectInputConstForceLeftMax"].ValueAs<unsigned>();
if (dInputConstForceLeftMax == 0)
return false;
lFFMag = (LONG)(-ffCmd.force * (float)(dInputConstForceLeftMax * DI_EFFECTS_SCALE)); // Invert sign for DirectInput effect
dicf.lMagnitude = std::min<LONG>(lFFMag, DI_EFFECTS_MAX);
}
eff.cbTypeSpecificParams = sizeof(DICONSTANTFORCE);
eff.lpvTypeSpecificParams = &dicf;
break;
case FFSelfCenter:
{
unsigned dInputSelfCenterMax = m_config["DirectInputSelfCenterMax"].ValueAs<unsigned>();
//printf("FFSelfCenter %0.2f\n", 100.0f * ffCmd.force);
if (dInputSelfCenterMax == 0)
return false;
lFFMag = (LONG)(ffCmd.force * (float)(dInputSelfCenterMax * DI_EFFECTS_SCALE));
dic.lOffset = 0;
dic.lPositiveCoefficient = std::max<LONG>(0, std::min<LONG>(lFFMag, DI_EFFECTS_MAX));
dic.lNegativeCoefficient = std::max<LONG>(0, std::min<LONG>(lFFMag, DI_EFFECTS_MAX));
dic.dwPositiveSaturation = DI_FFNOMINALMAX;
dic.dwNegativeSaturation = DI_FFNOMINALMAX;
dic.lDeadBand = (LONG)(0.05 * DI_FFNOMINALMAX);
eff.cbTypeSpecificParams = sizeof(DICONDITION);
eff.lpvTypeSpecificParams = &dic;
break;
}
case FFFriction:
{
unsigned dInputFrictionMax = m_config["DirectInputFrictionMax"].ValueAs<unsigned>();
//printf("FFFriction %0.2f\n", 100.0f * ffCmd.force);
if (dInputFrictionMax == 0)
return false;
lFFMag = (LONG)(ffCmd.force * (float)(dInputFrictionMax * DI_EFFECTS_SCALE));
dic.lOffset = 0;
dic.lPositiveCoefficient = std::max<LONG>(0, std::min<LONG>(lFFMag, DI_EFFECTS_MAX));
dic.lNegativeCoefficient = std::max<LONG>(0, std::min<LONG>(lFFMag, DI_EFFECTS_MAX));
dic.dwPositiveSaturation = DI_FFNOMINALMAX;
dic.dwNegativeSaturation = DI_FFNOMINALMAX;
dic.lDeadBand = 0;
eff.cbTypeSpecificParams = sizeof(DICONDITION);
eff.lpvTypeSpecificParams = &dic;
break;
}
case FFVibrate:
{
unsigned dInputVibrateMax = m_config["DirectInputVibrateMax"].ValueAs<unsigned>();
//printf("FFVibrate %0.2f\n", 100.0f * ffCmd.force);
if (dInputVibrateMax == 0)
return false;
dFFMag = (DWORD)(ffCmd.force * (float)(dInputVibrateMax * DI_EFFECTS_SCALE));
dip.dwMagnitude = std::max<DWORD>(0, std::min<DWORD>(dFFMag, DI_EFFECTS_MAX));
dip.lOffset = 0;
dip.dwPhase = 0;
dip.dwPeriod = (DWORD)(0.05 * DI_SECONDS); // 1/20th second
eff.cbTypeSpecificParams = sizeof(DIPERIODIC);
eff.lpvTypeSpecificParams = &dip;
break;
}
default:
// Unknown feedback command
return false;
}
// Set the new parameters and start effect immediately
return SUCCEEDED(hr = (*pEffect)->SetParameters(&eff, DIEP_DIRECTION | DIEP_TYPESPECIFICPARAMS | DIEP_START));
}
}
bool CDirectInputSystem::ConfigMouseCentered()
{
// When checking if mouse centered, use system cursor rather than raw values (otherwise user's mouse movements won't match up
// with onscreen cursor during configuration)
POINT p;
if (!GetCursorPos(&p) || !ScreenToClient(m_hwnd, &p))
return false;
// See if mouse in center of display
unsigned lx = m_dispX + m_dispW / 4;
unsigned ly = m_dispY + m_dispH / 4;
if (p.x < (LONG)lx || p.x > (LONG)(lx + m_dispW / 2) || p.y < (LONG)ly || p.y > (LONG)(ly + m_dispH / 2))
return false;
// Once mouse has been centered, sync up mice raw values with current cursor position so that movements are detected correctly
ResetMice();
return true;
}
CInputSource *CDirectInputSystem::CreateAnyMouseSource(EMousePart msePart)
{
// If using RawInput, create a mouse source that uses the combined mouse state m_combRawState, rather than combining all the individual mouse
// sources in the default manner
if (m_useRawInput)
return CreateMouseSource(ANY_MOUSE, msePart);
return CInputSystem::CreateAnyMouseSource(msePart);
}
int CDirectInputSystem::GetNumKeyboards()
{
// If RawInput enabled, then return number of keyboards found. Otherwise, return ANY_KEYBOARD as DirectInput cannot handle multiple keyboards
return (m_useRawInput ? m_rawKeyboards.size() : ANY_KEYBOARD);
}
int CDirectInputSystem::GetNumMice()
{
// If RawInput enabled, then return number of mice found. Otherwise, return ANY_MOUSE as DirectInput cannot handle multiple keyboards
return (m_useRawInput ? m_rawMice.size() : ANY_MOUSE);
}
int CDirectInputSystem::GetNumJoysticks()
{
// Return number of joysticks found
return m_diJoyInfos.size();
}
const KeyDetails *CDirectInputSystem::GetKeyDetails(int kbdNum)
{
// If RawInput enabled, then return details for given keyboard. Otherwise, return NULL as DirectInput cannot handle multiple keyboards
return (m_useRawInput ? &m_keyDetails[kbdNum] : NULL);
}
const MouseDetails *CDirectInputSystem::GetMouseDetails(int mseNum)
{
// If RawInput enabled, then return details of given mouse. Otherwise, return NULL as DirectInput cannot handle multiple keyboards
return (m_useRawInput ? &m_mseDetails[mseNum] : NULL);
}
const JoyDetails *CDirectInputSystem::GetJoyDetails(int joyNum)
{
return &m_joyDetails[joyNum];
}
bool CDirectInputSystem::Poll()
{
// See if keyboard, mice and joysticks have been activated yet
if (!m_activated)
{
// If not, then get Window handle of SDL window
SDL_SysWMinfo info;
SDL_VERSION(&info.version);
if (SDL_GetWindowWMInfo(m_window, &info))
{
m_hwnd = info.info.win.window;
}
// Tell SDL to pass on all Windows events
// Removed - see below
//SDL_EventState(SDL_SYSWMEVENT, SDL_ENABLE);
// Activate the devices now that a Window handle is available
ActivateKeyboardsAndMice();
ActivateJoysticks();
m_activated = true;
}
// Wait or poll for event from SDL
// Removed - see below
/*
SDL_Event e;
while (SDL_PollEvent(&e))
{
if (e.type == SDL_QUIT)
return false;
else if (e.type == SDL_SYSWMEVENT)
{
SDL_SysWMmsg *wmMsg = e.syswm.msg;
ProcessWMEvent(wmMsg->hwnd, wmMsg->msg, wmMsg->wParam, wmMsg->lParam);
}
}*/
// Wait or poll for event on Windows message queue (done this way instead of using SDL_PollEvent as above because
// for some reason this causes RawInput HRAWINPUT handles to arrive stale. Not sure what SDL_PollEvent is doing to cause this
// but the following code can replace it without any problems as it is effectively what SDL_PollEvent does anyway)
MSG msg;
while (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE))
{
int ret = GetMessage(&msg, NULL, 0, 0);
if (ret == 0)
return false;
else if (ret > 0)
{
TranslateMessage(&msg);
// Handle RawInput messages here
if (m_useRawInput && msg.message == WM_INPUT)
ProcessRawInput((HRAWINPUT)msg.lParam);
// Propagate all messages to default (SDL) handlers
DispatchMessage(&msg);
}
}
// SDL2: I'm not sure how the SDL1.x code was detecting quit events but in
// SDL2, it seems that we want to explicitly run SDL_PollEvent() after we
// have peeked at the message queue ourselves (above).
// Wait or poll for event from SDL
SDL_Event e;
while (SDL_PollEvent(&e))
{
if (e.type == SDL_QUIT)
return false;
}
// Poll keyboards, mice and joysticks
PollKeyboardsAndMice();
PollJoysticks();
return true;
}
void CDirectInputSystem::SetMouseVisibility(bool visible)
{
if (m_useRawInput)
ShowCursor(!m_grabMouse && visible ? TRUE : FALSE);
else
ShowCursor(visible ? TRUE : FALSE);
}
void CDirectInputSystem::GrabMouse()
{
CInputSystem::GrabMouse();
if (m_useRawInput)
SetMouseVisibility(false);
// When grabbing mouse, make sure devices get re-activated
if (m_activated)
{
ActivateKeyboardsAndMice();
ActivateJoysticks();
}
}
void CDirectInputSystem::UngrabMouse()
{
CInputSystem::UngrabMouse();
// When ungrabbing mouse, make sure devices get re-activated
if (m_activated)
{
ActivateKeyboardsAndMice();
ActivateJoysticks();
}
}