mirror of
https://github.com/RetroDECK/Supermodel.git
synced 2024-11-23 14:15:40 +00:00
415 lines
12 KiB
C
415 lines
12 KiB
C
#ifndef _R3DSHADERTRIANGLES_H_
|
|
#define _R3DSHADERTRIANGLES_H_
|
|
|
|
static const char *vertexShaderR3D = R"glsl(
|
|
|
|
#version 120
|
|
|
|
// uniforms
|
|
uniform float modelScale;
|
|
uniform mat4 modelMat;
|
|
uniform mat4 projMat;
|
|
|
|
// attributes
|
|
attribute vec4 inVertex;
|
|
attribute vec3 inNormal;
|
|
attribute vec2 inTexCoord;
|
|
attribute vec4 inColour;
|
|
attribute vec3 inFaceNormal; // used to emulate r3d culling
|
|
attribute float inFixedShade;
|
|
|
|
// outputs to fragment shader
|
|
varying vec3 fsViewVertex;
|
|
varying vec3 fsViewNormal; // per vertex normal vector
|
|
varying vec2 fsTexCoord;
|
|
varying vec4 fsColor;
|
|
varying float fsDiscard; // can't have varying bool (glsl spec)
|
|
varying float fsFixedShade;
|
|
|
|
float CalcBackFace(in vec3 viewVertex)
|
|
{
|
|
vec3 vt = viewVertex - vec3(0.0);
|
|
vec3 vn = (mat3(modelMat) * inFaceNormal);
|
|
|
|
// dot product of face normal with view direction
|
|
return dot(vt, vn);
|
|
}
|
|
|
|
void main(void)
|
|
{
|
|
fsViewVertex = vec3(modelMat * inVertex);
|
|
fsViewNormal = (mat3(modelMat) * inNormal) / modelScale;
|
|
fsDiscard = CalcBackFace(fsViewVertex);
|
|
fsColor = inColour;
|
|
fsTexCoord = inTexCoord;
|
|
fsFixedShade = inFixedShade;
|
|
gl_Position = projMat * modelMat * inVertex;
|
|
}
|
|
)glsl";
|
|
|
|
static const char *fragmentShaderR3D = R"glsl(
|
|
|
|
#version 120
|
|
|
|
uniform sampler2D tex1; // base tex
|
|
uniform sampler2D tex2; // micro tex (optional)
|
|
|
|
// texturing
|
|
uniform bool textureEnabled;
|
|
uniform bool microTexture;
|
|
uniform float microTextureScale;
|
|
uniform vec2 baseTexSize;
|
|
uniform bool textureInverted;
|
|
uniform bool textureAlpha;
|
|
uniform bool alphaTest;
|
|
uniform bool discardAlpha;
|
|
uniform ivec2 textureWrapMode;
|
|
|
|
// general
|
|
uniform vec3 fogColour;
|
|
uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)
|
|
uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit
|
|
uniform vec3 spotColor; // spotlight RGB color
|
|
uniform vec3 spotFogColor; // spotlight RGB color on fog
|
|
uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)
|
|
uniform bool lightEnabled; // lighting enabled (1.0) or luminous (0.0), drawn at full intensity
|
|
uniform bool sunClamp; // not used by daytona and la machine guns
|
|
uniform bool intensityClamp; // some games such as daytona and
|
|
uniform bool specularEnabled; // specular enabled
|
|
uniform float specularValue; // specular coefficient
|
|
uniform float shininess; // specular shininess
|
|
uniform float fogIntensity;
|
|
uniform float fogDensity;
|
|
uniform float fogStart;
|
|
uniform float fogAttenuation;
|
|
uniform float fogAmbient;
|
|
uniform bool fixedShading;
|
|
uniform int hardwareStep;
|
|
|
|
//interpolated inputs from vertex shader
|
|
varying vec3 fsViewVertex;
|
|
varying vec3 fsViewNormal; // per vertex normal vector
|
|
varying vec4 fsColor;
|
|
varying vec2 fsTexCoord;
|
|
varying float fsDiscard;
|
|
varying float fsFixedShade;
|
|
|
|
float mip_map_level(in vec2 texture_coordinate) // in texel units
|
|
{
|
|
vec2 dx_vtc = dFdx(texture_coordinate);
|
|
vec2 dy_vtc = dFdy(texture_coordinate);
|
|
float delta_max_sqr = max(dot(dx_vtc, dx_vtc), dot(dy_vtc, dy_vtc));
|
|
float mml = 0.5 * log2(delta_max_sqr);
|
|
return max( 0, mml );
|
|
}
|
|
|
|
float LinearTexLocations(int wrapMode, float size, float u, out float u0, out float u1)
|
|
{
|
|
float texelSize = 1.0 / size;
|
|
float halfTexelSize = 0.5 / size;
|
|
|
|
if(wrapMode==0) { // repeat
|
|
u = (u * size) - 0.5;
|
|
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
|
|
u0 = fract(u0);
|
|
u1 = u0 + texelSize;
|
|
u1 = fract(u1);
|
|
|
|
return fract(u); // return weight
|
|
}
|
|
else if(wrapMode==1) { // repeat + clamp
|
|
u = fract(u); // must force into 0-1 to start
|
|
u = (u * size) - 0.5;
|
|
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
|
|
u1 = u0 + texelSize;
|
|
|
|
if(u0 < 0.0) u0 = 0.0;
|
|
if(u1 >= 1.0) u1 = 1.0 - halfTexelSize;
|
|
|
|
return fract(u); // return weight
|
|
}
|
|
else { // mirror + mirror clamp - both are the same since the edge pixels are repeated anyway
|
|
|
|
float odd = floor(mod(u, 2.0)); // odd values are mirrored
|
|
|
|
if(odd > 0.0) {
|
|
u = 1.0 - fract(u);
|
|
}
|
|
else {
|
|
u = fract(u);
|
|
}
|
|
|
|
u = (u * size) - 0.5;
|
|
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
|
|
u1 = u0 + texelSize;
|
|
|
|
if(u0 < 0.0) u0 = 0.0;
|
|
if(u1 >= 1.0) u1 = 1.0 - halfTexelSize;
|
|
|
|
return fract(u); // return weight
|
|
}
|
|
}
|
|
|
|
vec4 texBiLinear(sampler2D texSampler, float level, ivec2 wrapMode, vec2 texSize, vec2 texCoord)
|
|
{
|
|
float tx[2], ty[2];
|
|
float a = LinearTexLocations(wrapMode.s, texSize.x, texCoord.x, tx[0], tx[1]);
|
|
float b = LinearTexLocations(wrapMode.t, texSize.y, texCoord.y, ty[0], ty[1]);
|
|
|
|
vec4 p0q0 = texture2DLod(texSampler, vec2(tx[0],ty[0]), level);
|
|
vec4 p1q0 = texture2DLod(texSampler, vec2(tx[1],ty[0]), level);
|
|
vec4 p0q1 = texture2DLod(texSampler, vec2(tx[0],ty[1]), level);
|
|
vec4 p1q1 = texture2DLod(texSampler, vec2(tx[1],ty[1]), level);
|
|
|
|
if(alphaTest) {
|
|
if(p0q0.a > p1q0.a) { p1q0.rgb = p0q0.rgb; }
|
|
if(p0q0.a > p0q1.a) { p0q1.rgb = p0q0.rgb; }
|
|
|
|
if(p1q0.a > p0q0.a) { p0q0.rgb = p1q0.rgb; }
|
|
if(p1q0.a > p1q1.a) { p1q1.rgb = p1q0.rgb; }
|
|
|
|
if(p0q1.a > p0q0.a) { p0q0.rgb = p0q1.rgb; }
|
|
if(p0q1.a > p1q1.a) { p1q1.rgb = p0q1.rgb; }
|
|
|
|
if(p1q1.a > p0q1.a) { p0q1.rgb = p1q1.rgb; }
|
|
if(p1q1.a > p1q0.a) { p1q0.rgb = p1q1.rgb; }
|
|
}
|
|
|
|
// Interpolation in X direction.
|
|
vec4 pInterp_q0 = mix( p0q0, p1q0, a ); // Interpolates top row in X direction.
|
|
vec4 pInterp_q1 = mix( p0q1, p1q1, a ); // Interpolates bottom row in X direction.
|
|
|
|
return mix( pInterp_q0, pInterp_q1, b ); // Interpolate in Y direction.
|
|
}
|
|
|
|
vec4 textureR3D(sampler2D texSampler, ivec2 wrapMode, vec2 texSize, vec2 texCoord)
|
|
{
|
|
float numLevels = floor(log2(min(texSize.x, texSize.y))); // r3d only generates down to 1:1 for square textures, otherwise its the min dimension
|
|
float fLevel = min(mip_map_level(texCoord * texSize), numLevels);
|
|
|
|
if(alphaTest) fLevel *= 0.5;
|
|
else fLevel *= 0.8;
|
|
|
|
float iLevel = floor(fLevel); // value as an 'int'
|
|
|
|
vec2 texSize0 = texSize / pow(2, iLevel);
|
|
vec2 texSize1 = texSize / pow(2, iLevel+1.0);
|
|
|
|
vec4 texLevel0 = texBiLinear(texSampler, iLevel, wrapMode, texSize0, texCoord);
|
|
vec4 texLevel1 = texBiLinear(texSampler, iLevel+1.0, wrapMode, texSize1, texCoord);
|
|
|
|
return mix(texLevel0, texLevel1, fract(fLevel)); // linear blend between our mipmap levels
|
|
}
|
|
|
|
vec4 GetTextureValue()
|
|
{
|
|
vec4 tex1Data = textureR3D(tex1, textureWrapMode, baseTexSize, fsTexCoord);
|
|
|
|
if(textureInverted) {
|
|
tex1Data.rgb = vec3(1.0) - vec3(tex1Data.rgb);
|
|
}
|
|
|
|
if (microTexture) {
|
|
vec2 scale = (baseTexSize / 128.0) * microTextureScale;
|
|
vec4 tex2Data = textureR3D( tex2, ivec2(0), vec2(128.0), fsTexCoord * scale);
|
|
|
|
float lod = mip_map_level(fsTexCoord * scale * vec2(128.0));
|
|
|
|
float blendFactor = max(lod - 1.5, 0.0); // bias -1.5
|
|
blendFactor = min(blendFactor, 1.0); // clamp to max value 1
|
|
blendFactor = (blendFactor + 1.0) / 2.0; // 0.5 - 1 range
|
|
|
|
tex1Data = mix(tex2Data, tex1Data, blendFactor);
|
|
}
|
|
|
|
if (alphaTest) {
|
|
if (tex1Data.a < (32.0/255.0)) {
|
|
discard;
|
|
}
|
|
}
|
|
|
|
if(textureAlpha) {
|
|
if(discardAlpha) { // opaque 1st pass
|
|
if (tex1Data.a < 1.0) {
|
|
discard;
|
|
}
|
|
}
|
|
else { // transparent 2nd pass
|
|
if ((tex1Data.a * fsColor.a) >= 1.0) {
|
|
discard;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (textureAlpha == false) {
|
|
tex1Data.a = 1.0;
|
|
}
|
|
|
|
return tex1Data;
|
|
}
|
|
|
|
void Step15Luminous(inout vec4 colour)
|
|
{
|
|
// luminous polys seem to behave very differently on step 1.5 hardware
|
|
// when fixed shading is enabled the colour is modulated by the vp ambient + fixed shade value
|
|
// when disabled it appears to be multiplied by 1.5, presumably to allow a higher range
|
|
if(hardwareStep==0x15) {
|
|
if(!lightEnabled && textureEnabled) {
|
|
if(fixedShading) {
|
|
colour.rgb *= 1.0 + fsFixedShade + lighting[1].y;
|
|
}
|
|
else {
|
|
colour.rgb *= vec3(1.5);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float CalcFog()
|
|
{
|
|
float z = -fsViewVertex.z;
|
|
float fog = fogIntensity * clamp(fogStart + z * fogDensity, 0.0, 1.0);
|
|
|
|
return fog;
|
|
}
|
|
|
|
void main()
|
|
{
|
|
vec4 tex1Data;
|
|
vec4 colData;
|
|
vec4 finalData;
|
|
vec4 fogData;
|
|
|
|
if(fsDiscard > 0) {
|
|
discard; //emulate back face culling here
|
|
}
|
|
|
|
fogData = vec4(fogColour.rgb * fogAmbient, CalcFog());
|
|
tex1Data = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
if(textureEnabled) {
|
|
tex1Data = GetTextureValue();
|
|
}
|
|
|
|
colData = fsColor;
|
|
Step15Luminous(colData); // no-op for step 2.0+
|
|
finalData = tex1Data * colData;
|
|
|
|
if (finalData.a < (1.0/16.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports
|
|
discard;
|
|
}
|
|
|
|
float ellipse;
|
|
ellipse = length((gl_FragCoord.xy - spotEllipse.xy) / spotEllipse.zw);
|
|
ellipse = pow(ellipse, 2.0); // decay rate = square of distance from center
|
|
ellipse = 1.0 - ellipse; // invert
|
|
ellipse = max(0.0, ellipse); // clamp
|
|
|
|
// Compute spotlight and apply lighting
|
|
float enable, absExtent, d, inv_r, range;
|
|
|
|
// start of spotlight
|
|
enable = step(spotRange.x, -fsViewVertex.z);
|
|
|
|
if (spotRange.y == 0.0) {
|
|
range = 0.0;
|
|
}
|
|
else {
|
|
absExtent = abs(spotRange.y);
|
|
|
|
d = spotRange.x + absExtent + fsViewVertex.z;
|
|
d = min(d, 0.0);
|
|
|
|
// slope of decay function
|
|
inv_r = 1.0 / (1.0 + absExtent);
|
|
|
|
// inverse-linear falloff
|
|
// Reference: https://imdoingitwrong.wordpress.com/2011/01/31/light-attenuation/
|
|
// y = 1 / (d/r + 1)^2
|
|
range = 1.0 / pow(d * inv_r - 1.0, 2.0);
|
|
range *= enable;
|
|
}
|
|
|
|
float lobeEffect = range * ellipse;
|
|
float lobeFogEffect = enable * ellipse;
|
|
|
|
if (lightEnabled) {
|
|
vec3 lightIntensity;
|
|
vec3 sunVector; // sun lighting vector (as reflecting away from vertex)
|
|
float sunFactor; // sun light projection along vertex normal (0.0 to 1.0)
|
|
|
|
// Sun angle
|
|
sunVector = lighting[0];
|
|
|
|
// Compute diffuse factor for sunlight
|
|
if(fixedShading) {
|
|
sunFactor = fsFixedShade;
|
|
}
|
|
else {
|
|
sunFactor = dot(sunVector, fsViewNormal);
|
|
}
|
|
|
|
// Clamp ceil, fix for upscaled models without "modelScale" defined
|
|
sunFactor = clamp(sunFactor,-1.0,1.0);
|
|
|
|
// Optional clamping, value is allowed to be negative
|
|
if(sunClamp) {
|
|
sunFactor = max(sunFactor,0.0);
|
|
}
|
|
|
|
// Total light intensity: sum of all components
|
|
lightIntensity = vec3(sunFactor*lighting[1].x + lighting[1].y); // diffuse + ambient
|
|
|
|
lightIntensity.rgb += spotColor*lobeEffect;
|
|
|
|
// Upper clamp is optional, step 1.5+ games will drive brightness beyond 100%
|
|
if(intensityClamp) {
|
|
lightIntensity = min(lightIntensity,1.0);
|
|
}
|
|
|
|
finalData.rgb *= lightIntensity;
|
|
|
|
// for now assume fixed shading doesn't work with specular
|
|
if (specularEnabled) {
|
|
|
|
float exponent, NdotL, specularFactor;
|
|
vec4 biasIndex, expIndex, multIndex;
|
|
|
|
// Always clamp floor to zero, we don't want deep black areas
|
|
NdotL = max(0.0,sunFactor);
|
|
|
|
expIndex = vec4(8.0, 16.0, 32.0, 64.0);
|
|
multIndex = vec4(2.0, 2.0, 3.0, 4.0);
|
|
biasIndex = vec4(0.95, 0.95, 1.05, 1.0);
|
|
exponent = expIndex[int(shininess)] / biasIndex[int(shininess)];
|
|
|
|
specularFactor = pow(NdotL, exponent);
|
|
specularFactor *= multIndex[int(shininess)];
|
|
specularFactor *= biasIndex[int(shininess)];
|
|
|
|
specularFactor *= specularValue;
|
|
specularFactor *= lighting[1].x;
|
|
|
|
if (colData.a < 1.0) {
|
|
/// Specular hi-light affects translucent polygons alpha channel ///
|
|
finalData.a = max(finalData.a, specularFactor);
|
|
}
|
|
|
|
finalData.rgb += vec3(specularFactor);
|
|
}
|
|
}
|
|
|
|
// Final clamp: we need it for proper shading in dimmed light and dark ambients
|
|
finalData.rgb = min(finalData.rgb, vec3(1.0));
|
|
|
|
// Spotlight on fog
|
|
vec3 lSpotFogColor = spotFogColor * fogAttenuation * fogColour.rgb * lobeFogEffect;
|
|
|
|
// Fog & spotlight applied
|
|
finalData.rgb = mix(finalData.rgb, fogData.rgb + lSpotFogColor, fogData.a);
|
|
|
|
gl_FragColor = finalData;
|
|
}
|
|
)glsl";
|
|
|
|
#endif |