mirror of
https://github.com/RetroDECK/Supermodel.git
synced 2024-11-26 23:55:40 +00:00
183dca563d
- Added 'crosshairs' command line and config option. - Added 'vsync' command line and config option (so far only tested on NVidia cards on Windows 7 - other graphics drivers, O/Ss or driver settings may simply chose to ignore this). - Added fullscreen toggle within game using Alt+Enter key combination. - Added framework for lamp outputs and 'outputs' command line and config option. So far only the lamps for driving games are hooked up in the emulator (others to be added later). - Added an initial outputs implementation for Windows that sends MAMEHooker compatible messages (-outputs=win to enable) - Fixed fps calculation in Main.cpp that was producing incorrect results and so giving the impression that frame throttling wasn't working properly when in fact it was. - Fixed palette indexed colours as the index was always off by one, causing incorrect colours in various games, eg drivers' suits and flashing Start sign in Daytona 2. - Altered caching of models so that models with palette indexed colours use the dynamic cache rather than the static one. This is so that changes in palette indexed colours appear on screen, eg the flashing Start sign on the advanced course of Daytona 2 (although currently the START message itself is not visible due to other problems with texture decoding). - Fixed small bug in TileGen.cpp which meant both palettes were being completely recomputed pretty much with every frame. This was a significant performance hit, particularly as palette recomputation is currently being done in SyncSnapshots (it should be moved out of here at some point, although for now it's no big deal). - Made sure all OpenGL objects and resources are deleted in Render2D/3D destructors, in particular the deleting of the VBO buffer in DestroyModelCache. - Made sure that GLSL uniforms are always checked to see if they are bound before using them in order to stop unecessary (but harmless) GL errors. - Altered the default texture sheet handling to use a single large GL texture holding multiple Model3 texture sheets rather than multiple GL textures as before (if required, the old behaviour can still be selected with the mulisheet fragment shader). I believe this fixes the disappearing crosshairs/corrupt GL state problem which the multisheet fragment shader seemed to be triggering somehow. - Fixed a bug in debugger which meant memory watches were not triggering properly
143 lines
5.1 KiB
GLSL
143 lines
5.1 KiB
GLSL
/**
|
|
** Supermodel
|
|
** A Sega Model 3 Arcade Emulator.
|
|
** Copyright 2011 Bart Trzynadlowski, Nik Henson
|
|
**
|
|
** This file is part of Supermodel.
|
|
**
|
|
** Supermodel is free software: you can redistribute it and/or modify it under
|
|
** the terms of the GNU General Public License as published by the Free
|
|
** Software Foundation, either version 3 of the License, or (at your option)
|
|
** any later version.
|
|
**
|
|
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
|
|
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
** more details.
|
|
**
|
|
** You should have received a copy of the GNU General Public License along
|
|
** with Supermodel. If not, see <http://www.gnu.org/licenses/>.
|
|
**/
|
|
|
|
/*
|
|
* Fragment_NoSpotlight.glsl
|
|
*
|
|
* Fragment shader for 3D rendering. Spotlight effect removed. Fixes fragment
|
|
* shader link errors on older ATI Radeon GPUs.
|
|
*
|
|
* To load external fragment shaders, use the -frag-shader=<file> option when
|
|
* starting Supermodel.
|
|
*/
|
|
|
|
#version 120
|
|
|
|
// Global uniforms
|
|
uniform sampler2D textureMap; // complete texture map, 2048x2048 texels
|
|
uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)
|
|
uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit
|
|
uniform vec3 spotColor; // spotlight RGB color
|
|
uniform float mapSize; // texture map size (2048,4096,6144 etc)
|
|
|
|
// Inputs from vertex shader
|
|
varying vec4 fsSubTexture; // .x=texture X, .y=texture Y, .z=texture width, .w=texture height (all in texels)
|
|
varying vec4 fsTexParams; // .x=texture enable (if 1, else 0), .y=use transparency (if > 0), .z=U wrap mode (1=mirror, 0=repeat), .w=V wrap mode
|
|
varying float fsTexFormat; // .x=T1RGB5 contour texture (if > 0)
|
|
varying float fsTransLevel; // translucence level, 0.0 (transparent) to 1.0 (opaque)
|
|
varying vec3 fsLightIntensity; // lighting intensity
|
|
varying float fsFogFactor; // fog factor
|
|
varying float fsViewZ; // Z distance to fragment from viewpoint at origin
|
|
|
|
/*
|
|
* WrapTexelCoords():
|
|
*
|
|
* Computes the normalized OpenGL S,T coordinates within the 2048x2048 texture
|
|
* sheet, taking into account wrapping behavior.
|
|
*
|
|
* Computing normalized OpenGL texture coordinates (0 to 1) within the
|
|
* Real3D texture sheet:
|
|
*
|
|
* If the texture is not mirrored, we simply have to clamp the
|
|
* coordinates to fit within the texture dimensions, add the texture
|
|
* X, Y position to select the appropriate one, and normalize by 2048
|
|
* (the dimensions of the Real3D texture sheet).
|
|
*
|
|
* = [(u,v)%(w,h)+(x,y)]/(2048,2048)
|
|
*
|
|
* If mirroring is enabled, textures are mirrored every odd multiple of
|
|
* the original texture. To detect whether we are in an odd multiple,
|
|
* simply divide the coordinate by the texture dimension and check
|
|
* whether the result is odd. Then, clamp the coordinates as before but
|
|
* subtract from the last texel to mirror them:
|
|
*
|
|
* = [M*((w-1,h-1)-(u,v)%(w,h)) + (1-M)*(u,v)%(w,h) + (x,y)]/(2048,2048)
|
|
* where M is 1.0 if the texture must be mirrored.
|
|
*
|
|
* As an optimization, this function computes TWO texture coordinates
|
|
* simultaneously. The first is texCoord.xy, the second is in .zw. The other
|
|
* parameters must have .xy = .zw.
|
|
*/
|
|
vec4 WrapTexelCoords(vec4 texCoord, vec4 texOffset, vec4 texSize, vec4 mirrorEnable)
|
|
{
|
|
vec4 clampedCoord, mirror, glTexCoord;
|
|
|
|
clampedCoord = mod(texCoord,texSize); // clamp coordinates to within texture size
|
|
mirror = mirrorEnable * mod(floor(texCoord/texSize),2.0); // whether this texel needs to be mirrored
|
|
|
|
glTexCoord = ( mirror*(texSize-clampedCoord) +
|
|
(vec4(1.0,1.0,1.0,1.0)-mirror)*clampedCoord +
|
|
texOffset
|
|
) / mapSize;
|
|
/*
|
|
glTexCoord = ( mirror*(texSize-vec4(1.0,1.0,1.0,1.0)-clampedCoord) +
|
|
(vec4(1.0,1.0,1.0,1.0)-mirror)*clampedCoord +
|
|
texOffset
|
|
) / mapSize;
|
|
*/
|
|
return glTexCoord;
|
|
}
|
|
|
|
/*
|
|
* main():
|
|
*
|
|
* Fragment shader entry point.
|
|
*/
|
|
|
|
void main(void)
|
|
{
|
|
vec4 uv_top, uv_bot, c[4];
|
|
vec2 r;
|
|
vec4 fragColor;
|
|
vec2 ellipse;
|
|
vec3 lightIntensity;
|
|
float insideSpot;
|
|
|
|
// Get polygon color for untextured polygons (textured polygons will overwrite)
|
|
if (fsTexParams.x < 0.5)
|
|
fragColor = gl_Color;
|
|
else
|
|
// Textured polygons: set fragment color to texel value
|
|
{
|
|
fragColor = texture2D(textureMap,(fsSubTexture.xy+fsSubTexture.zw/2.0)/mapSize);
|
|
//fragColor += texture2D(textureMap,(fsSubTexture.xy+fsSubTexture.zw)/mapSize);
|
|
|
|
}
|
|
|
|
// Compute spotlight and apply lighting
|
|
ellipse = (gl_FragCoord.xy-spotEllipse.xy)/spotEllipse.zw;
|
|
insideSpot = dot(ellipse,ellipse);
|
|
if ((insideSpot <= 1.0) && (fsViewZ>=spotRange.x) && (fsViewZ<spotRange.y))
|
|
lightIntensity = fsLightIntensity+(1.0-insideSpot)*spotColor;
|
|
else
|
|
lightIntensity = fsLightIntensity;
|
|
fragColor.rgb *= lightIntensity;
|
|
|
|
// Translucency (modulates existing alpha channel for RGBA4 texels)
|
|
fragColor.a *= fsTransLevel;
|
|
|
|
// Apply fog under the control of fog factor setting from polygon header
|
|
fragColor.rgb = mix(gl_Fog.color.rgb, fragColor.rgb, fsFogFactor );
|
|
|
|
// Store final color
|
|
gl_FragColor = fragColor;
|
|
}
|