Supermodel/Src/Model3/DriveBoard.cpp
2020-10-24 09:12:54 +00:00

1078 lines
29 KiB
C++

/**
** Supermodel
** A Sega Model 3 Arcade Emulator.
** Copyright 2011 Bart Trzynadlowski, Nik Henson
**
** This file is part of Supermodel.
**
** Supermodel is free software: you can redistribute it and/or modify it under
** the terms of the GNU General Public License as published by the Free
** Software Foundation, either version 3 of the License, or (at your option)
** any later version.
**
** Supermodel is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
** more details.
**
** You should have received a copy of the GNU General Public License along
** with Supermodel. If not, see <http://www.gnu.org/licenses/>.
**/
/*
* DriveBoard.cpp
*
* Implementation of the CDriveBoard class: drive board (force feedback)
* emulation.
*
* NOTE: Simulation does not yet work. Drive board ROMs are required.
*/
#include "Supermodel.h"
#include <cstdio>
#include <cmath>
#include <algorithm>
#define RAM_SIZE 0x2000 // Z80 RAM
bool CDriveBoard::IsAttached(void)
{
return m_attached && !m_tmpDisabled;
}
bool CDriveBoard::IsSimulated(void)
{
return m_simulated;
}
void CDriveBoard::GetDIPSwitches(UINT8 &dip1, UINT8 &dip2)
{
dip1 = m_dip1;
dip2 = m_dip2;
}
void CDriveBoard::SetDIPSwitches(UINT8 dip1, UINT8 dip2)
{
m_dip1 = dip1;
m_dip2 = dip2;
}
unsigned CDriveBoard::GetSteeringStrength()
{
return ((~(m_dip1>>2))&7) + 1;
}
void CDriveBoard::SetSteeringStrength(unsigned steeringStrength)
{
m_dip1 = (m_dip1&0xE3) | (((~(steeringStrength - 1))&7)<<2);
}
void CDriveBoard::Get7SegDisplays(UINT8 &seg1Digit1, UINT8 &seg1Digit2, UINT8 &seg2Digit1, UINT8 &seg2Digit2)
{
seg1Digit1 = m_seg1Digit1;
seg1Digit2 = m_seg1Digit2;
seg2Digit1 = m_seg2Digit1;
seg2Digit2 = m_seg2Digit2;
}
CZ80 *CDriveBoard::GetZ80(void)
{
return &m_z80;
}
void CDriveBoard::SaveState(CBlockFile *SaveState)
{
SaveState->NewBlock("DriveBoard", __FILE__);
// Check board is attached and not temporarily disabled
bool attached = m_attached && !m_tmpDisabled;
SaveState->Write(&attached, sizeof(attached));
if (attached)
{
// Check if simulated
SaveState->Write(&m_simulated, sizeof(m_simulated));
if (m_simulated)
{
// TODO - save board simulation state
}
else
{
// Save DIP switches and digit displays
SaveState->Write(&m_dip1, sizeof(m_dip1));
SaveState->Write(&m_dip2, sizeof(m_dip2));
//SaveState->Write(&m_seg1Digit1, sizeof(m_seg1Digit1)); // No point in saving these
//SaveState->Write(&m_seg1Digit2, sizeof(m_seg1Digit2));
//SaveState->Write(&m_seg2Digit1, sizeof(m_seg2Digit1));
//SaveState->Write(&m_seg2Digit2, sizeof(m_seg2Digit2));
// Save RAM state
SaveState->Write(m_ram, RAM_SIZE);
// Save interrupt and input/output state
SaveState->Write(&m_initialized, sizeof(m_initialized));
SaveState->Write(&m_allowInterrupts, sizeof(m_allowInterrupts));
SaveState->Write(&m_dataSent, sizeof(m_dataSent));
SaveState->Write(&m_dataReceived, sizeof(m_dataReceived));
SaveState->Write(&m_adcPortRead, sizeof(m_adcPortRead));
SaveState->Write(&m_adcPortBit, sizeof(m_adcPortBit));
SaveState->Write(&m_uncenterVal1, sizeof(m_uncenterVal1));
SaveState->Write(&m_uncenterVal2, sizeof(m_uncenterVal2));
// Save CPU state
m_z80.SaveState(SaveState, "DriveBoard Z80");
}
}
}
void CDriveBoard::LoadState(CBlockFile *SaveState)
{
if (SaveState->FindBlock("DriveBoard") != OKAY)
{
ErrorLog("Unable to load drive board state. Save state file is corrupt.");
return;
}
// Check that board was attached in saved state
bool wasAttached;
SaveState->Read(&wasAttached, sizeof(wasAttached));
if (wasAttached)
{
// Check that board configuration exactly matches current configuration
bool wasSimulated;
SaveState->Read(&wasSimulated, sizeof(wasSimulated));
if (wasAttached == m_attached && wasSimulated == m_simulated)
{
// Check if board was simulated
if (wasSimulated)
{
// TODO - load board simulation state
}
else
{
// Load DIP switches and digit displays
SaveState->Read(&m_dip1, sizeof(m_dip1));
SaveState->Read(&m_dip2, sizeof(m_dip2));
//SaveState->Read(&m_seg1Digit1, sizeof(m_seg1Digit1));
//SaveState->Read(&m_seg1Digit2, sizeof(m_seg1Digit2));
//SaveState->Read(&m_seg2Digit1, sizeof(m_seg2Digit1));
//SaveState->Read(&m_seg2Digit2, sizeof(m_seg2Digit2));
// Load RAM state
SaveState->Read(m_ram, RAM_SIZE);
// Load interrupt and input/output state
SaveState->Read(&m_initialized, sizeof(m_initialized));
SaveState->Read(&m_allowInterrupts, sizeof(m_allowInterrupts));
SaveState->Read(&m_dataSent, sizeof(m_dataSent));
SaveState->Read(&m_dataReceived, sizeof(m_dataReceived));
SaveState->Read(&m_adcPortRead, sizeof(m_adcPortRead));
SaveState->Read(&m_adcPortBit, sizeof(m_adcPortBit));
SaveState->Read(&m_uncenterVal1, sizeof(m_uncenterVal1));
SaveState->Read(&m_uncenterVal2, sizeof(m_uncenterVal2));
// Load CPU state
m_z80.LoadState(SaveState, "DriveBoard Z80");
}
// Enable board
m_tmpDisabled = false;
}
else
{
// Otherwise, disable board as it can't be used with a mismatching configuratin
m_tmpDisabled = true;
}
}
else
// Disable board if it was not attached
m_tmpDisabled = true;
if (m_attached)
{
if (m_tmpDisabled)
printf("Disabled drive board due to incompatible save state.\n");
SendStopAll();
}
}
bool CDriveBoard::Init(const UINT8 *romPtr)
{
// Assign ROM (note that the ROM data has not yet been loaded)
m_rom = romPtr;
// Check have a valid ROM
m_attached = (m_rom != NULL);
if (!m_attached)
return OKAY;
// Allocate memory for RAM
m_ram = new (std::nothrow) UINT8[RAM_SIZE];
if (NULL == m_ram)
{
float ramSizeMB = (float)RAM_SIZE/(float)0x100000;
return ErrorLog("Insufficient memoy for drive board (needs %1.1f MB).", ramSizeMB);
}
memset(m_ram, 0, RAM_SIZE);
// Initialize Z80
m_z80.Init(this, NULL);
return OKAY;
}
void CDriveBoard::AttachInputs(CInputs *inputs, unsigned gameInputFlags)
{
m_inputs = inputs;
m_inputFlags = gameInputFlags;
DebugLog("DriveBoard attached inputs\n");
}
void CDriveBoard::AttachOutputs(COutputs *outputs)
{
m_outputs = outputs;
DebugLog("DriveBoard attached outputs\n");
}
void CDriveBoard::Reset(void)
{
m_tmpDisabled = false;
m_initialized = false;
m_allowInterrupts = false;
m_seg1Digit1 = 0xFF;
m_seg1Digit2 = 0xFF;
m_seg2Digit1 = 0xFF;
m_seg2Digit2 = 0xFF;
m_dataSent = 0;
m_dataReceived = 0;
m_adcPortRead = 0;
m_adcPortBit = 0;
m_port42Out = 0;
m_port45Out = 0;
m_port46Out = 0;
m_prev42Out = 0;
m_prev45Out = 0;
m_prev46Out = 0;
m_initState = 0;
m_boardMode = 0;
m_readMode = 0;
m_wheelCenter = 0x80;
m_uncenterVal1 = 0;
m_uncenterVal2 = 0;
m_lastConstForce = 0;
m_lastConstForceY = 0;
m_lastSelfCenter = 0;
m_lastFriction = 0;
m_lastVibrate = 0;
// Configure options (cannot be done in Init() because command line settings weren't yet parsed)
m_simulated = false; //TODO: make this run-time configurable when simulation mode is supported
SetSteeringStrength(m_config["SteeringStrength"].ValueAsDefault<unsigned>(5));
m_z80.Reset(); // always reset to provide a valid Z80 state
if (!m_config["ForceFeedback"].ValueAsDefault<bool>(false))
m_attached = false;
// Stop any effects that may still be playing
if (m_attached)
SendStopAll();
}
UINT8 CDriveBoard::Read(void)
{
// TODO - simulate initialization sequence even when emulating to get rid of long pause at boot up (drive board can
// carry on booting whilst game starts)
if (m_simulated)
return SimulateRead();
else
return m_dataReceived;
}
void CDriveBoard::Write(UINT8 data)
{
//if (data >= 0x01 && data <= 0x0F ||
// data >= 0x20 && data <= 0x2F ||
// data >= 0x30 && data <= 0x3F ||
// data >= 0x40 && data <= 0x4F ||
// data >= 0x70 && data <= 0x7F)
// printf("DriveBoard.Write(%02X)\n", data);
if (m_simulated)
SimulateWrite(data);
else
{
m_dataSent = data;
if (data == 0xCB)
m_initialized = false;
}
}
UINT8 CDriveBoard::SimulateRead(void)
{
if (m_initialized)
{
switch (m_readMode)
{
case 0x0: return m_statusFlags; // Status flags
case 0x1: return m_dip1; // DIP switch 1 value
case 0x2: return m_dip2; // DIP switch 2 value
case 0x3: return m_wheelCenter; // Wheel center
case 0x4: return 0x80; // Cockpit banking center
case 0x5: return m_inputs->steering->value; // Wheel position
case 0x6: return 0x80; // Cockpit banking position
case 0x7: return m_echoVal; // Init status/echo test
default: return 0xFF;
}
}
else
{
switch (m_initState / 5)
{
case 0: return 0xCF; // Initiate start
case 1: return 0xCE;
case 2: return 0xCD;
case 3: return 0xCC; // Centering wheel
default:
m_initialized = true;
return 0x80;
}
}
}
void CDriveBoard::SimulateWrite(UINT8 cmd)
{
// Following are commands for Scud Race. Daytona 2 has a compatible command set while Sega Rally 2 is completely different
// TODO - finish for Scud Race and Daytona 2
// TODO - implement for Sega Rally 2
UINT8 type = cmd>>4;
UINT8 val = cmd&0xF;
switch (type)
{
case 0: // 0x00-0F Play sequence
/* TODO */
break;
case 1: // 0x10-1F Set centering strength
if (val == 0)
// Disable auto-centering
// TODO - is 0x10 for disable?
SendSelfCenter(0);
else
// Enable auto-centering (0x1 = weakest, 0xF = strongest)
SendSelfCenter(val * 0x11);
break;
case 2: // 0x20-2F Friction strength
if (val == 0)
// Disable friction
// TODO - is 0x20 for disable?
SendFriction(0);
else
// Enable friction (0x1 = weakest, 0xF = strongest)
SendFriction(val * 0x11);
break;
case 3: // 0x30-3F Uncentering (vibrate)
if (val == 0)
// Disable uncentering
SendVibrate(0);
else
// Enable uncentering (0x1 = weakest, 0xF = strongest)
SendVibrate(val * 0x11);
break;
case 4: // 0x40-4F Play power-slide sequence
/* TODO */
break;
case 5: // 0x50-5F Rotate wheel right
SendConstantForce((val + 1) * 0x5);
break;
case 6: // 0x60-6F Rotate wheel left
SendConstantForce(-(val + 1) * 0x5);
break;
case 7: // 0x70-7F Set steering parameters
/* TODO */
break;
case 8: // 0x80-8F Test Mode
switch (val&0x7)
{
case 0: SendStopAll(); break; // 0x80 Stop motor
case 1: SendConstantForce(20); break; // 0x81 Roll wheel right
case 2: SendConstantForce(-20); break; // 0x82 Roll wheel left
case 3: /* Ignore - no clutch */ break; // 0x83 Clutch on
case 4: /* Ignore - no clutch */ break; // 0x84 Clutch off
case 5: m_wheelCenter = m_inputs->steering->value; break; // 0x85 Set wheel center position
case 6: /* Ignore */ break; // 0x86 Set cockpit banking position
case 7: /* Ignore */ break; // 0x87 Lamp on/off
}
case 0x9: // 0x90-9F ??? Don't appear to have any effect with Scud Race ROM
/* TODO */
break;
case 0xA: // 0xA0-AF ??? Don't appear to have any effect with Scud Race ROM
/* TODO */
break;
case 0xB: // 0xB0-BF Invalid command (reserved for use by PPC to send cabinet type 0xB0 or 0xB1 during initialization)
/* Ignore */
break;
case 0xC: // 0xC0-CF Set board mode (0xCB = reset board)
SendStopAll();
if (val >= 0xB)
{
// Reset board
m_initialized = false;
m_initState = 0;
}
else
m_boardMode = val;
break;
case 0xD: // 0xD0-DF Set read mode
m_readMode = val&0x7;
break;
case 0xE: // 0xE0-EF Invalid command
/* Ignore */
break;
case 0xF: // 0xF0-FF Echo test
m_echoVal = val;
break;
}
}
void CDriveBoard::RunFrame(void)
{
if (m_simulated)
SimulateFrame();
else
EmulateFrame();
}
void CDriveBoard::SimulateFrame(void)
{
if (!m_initialized)
m_initState++;
// TODO - update m_statusFlags and play preset scripts according to board mode
}
void CDriveBoard::EmulateFrame(void)
{
// Assuming Z80 runs @ 4.0MHz and NMI triggers @ 60.0KHz
// TODO - find out if Z80 frequency is correct and exact frequency of NMI interrupts (just guesswork at the moment!)
int cycles = (int)(4.0 * 1000000 / 60);
int loopCycles = 10000;
while (cycles > 0)
{
if (m_allowInterrupts)
m_z80.TriggerNMI();
cycles -= m_z80.Run(std::min<int>(loopCycles, cycles));
}
}
UINT8 CDriveBoard::Read8(UINT32 addr)
{
// TODO - shouldn't end of ROM be 0x7FFF not 0x8FFF?
if (addr < 0x9000) // ROM is 0x0000-0x8FFF
return m_rom[addr];
else if (addr >= 0xE000) // RAM is 0xE000-0xFFFF
return m_ram[(addr-0xE000)&0x1FFF];
else
{
//printf("Unhandled Z80 read of %08X (at PC = %04X)\n", addr, m_z80.GetPC());
return 0xFF;
}
}
void CDriveBoard::Write8(UINT32 addr, UINT8 data)
{
if (addr >= 0xE000) // RAM is 0xE000-0xFFFF
m_ram[(addr-0xE000)&0x1FFF] = data;
#ifdef DEBUG
else
printf("Unhandled Z80 write to %08X (at PC = %04X)\n", addr, m_z80.GetPC());
#endif
}
UINT8 CDriveBoard::IORead8(UINT32 portNum)
{
UINT8 adcVal;
switch (portNum)
{
case 0x20: // DIP 1 value
return m_dip1;
case 0x21: // DIP 2 value
return m_dip2;
case 0x24: // ADC channel 1 - Y analog axis for joystick
case 0x25: // ADC channel 2 - steering wheel position (0x00 = full left, 0x80 = center, 0xFF = full right) and X analog axis for joystick
case 0x26: // ADC channel 3 - cockpit bank position (deluxe cabinets) (0x00 = full left, 0x80 = center, 0xFF = full right)
case 0x27: // ADC channel 4 - not connected
if (portNum == m_adcPortRead && m_adcPortBit-- > 0)
{
switch (portNum)
{
case 0x24: // Y analog axis for joystick
adcVal = ReadADCChannel1();
break;
case 0x25: // Steering wheel for twin racing cabinets - TODO - check actual range of steering, suspect it is not really 0x00-0xFF
adcVal = ReadADCChannel2();
break;
case 0x26: // Cockpit bank position for deluxe racing cabinets
adcVal = ReadADCChannel3();
break;
case 0x27: // Not connected
adcVal = ReadADCChannel4();
break;
default:
#ifdef DEBUG
printf("Unhandled Z80 input on ADC port %u (at PC = %04X)\n", portNum, m_z80.GetPC());
#endif
return 0xFF;
}
return (adcVal>>m_adcPortBit)&0x01;
}
else
{
#ifdef DEBUG
printf("Unhandled Z80 input on ADC port %u (at PC = %04X)\n", portNum, m_z80.GetPC());
#endif
return 0xFF;
}
case 0x28: // PPC command
return m_dataSent;
case 0x2c: // Encoder error reporting (kept at 0x00 for no error)
// Bit 1 0
// 0 0 = encoder okay, no error
// 0 1 = encoder error 1 - overcurrent error
// 1 0 = encoder error 2 - overheat error
// 1 1 = encoder error 3 - encoder error, reinitializes board
return 0x00;
default:
#ifdef DEBUG
printf("Unhandled Z80 input on port %u (at PC = %04X)\n", portNum, m_z80.GetPC());
#endif
return 0xFF;
}
}
void CDriveBoard::IOWrite8(UINT32 portNum, UINT8 data)
{
switch (portNum)
{
case 0x10: // Unsure? - single byte 0x03 sent at initialization, then occasionally writes 0x07 & 0xFA to port
return;
case 0x11: // Interrupt control
if (data == 0x57)
m_allowInterrupts = true;
else if (data == 0x53) // Strictly speaking 0x53 then 0x04
m_allowInterrupts = false;
return;
case 0x1c: // Unsure? - two bytes 0xFF, 0xFF sent at initialization only
case 0x1d: // Unsure? - two bytes 0x0F, 0x17 sent at initialization only
case 0x1e: // Unsure? - same as port 28
case 0x1f: // Unsure? - same as port 31
return;
case 0x20: // Left digit of 7-segment display 1
m_seg1Digit1 = data;
return;
case 0x21: // Right digit of 7-segment display 1
m_seg1Digit2 = data;
return;
case 0x22: // Left digit of 7-segment display 2
m_seg2Digit1 = data;
return;
case 0x23: // Right digit of 7-segment display 2
m_seg2Digit2 = data;
return;
case 0x24: // ADC channel 1 control
case 0x25: // ADC channel 2 control
case 0x26: // ADC channel 3 control
case 0x27: // ADC channel 4 control
m_adcPortRead = portNum;
m_adcPortBit = 8;
return;
case 0x29: // Reply for PPC
m_dataReceived = data;
if ((data == 0xCC && m_boardType == Wheel) || (data==0xCB && m_boardType == Joystick))
m_initialized = true;
return;
case 0x2a: // Encoder motor data (x axis)
m_port42Out = data;
switch (m_boardType)
{
case Wheel:
ProcessEncoderCmd();
break;
case Joystick:
ProcessEncoderCmdJoystick();
break;
}
return;
case 0x2d: // Clutch/lamp control (deluxe cabinets) ( or y axis)
m_port45Out = data;
if (m_boardType==Joystick)
ProcessEncoderCmdJoystick();
return;
case 0x2e: // Encoder motor control
m_port46Out = data;
return;
case 0xf0: // Unsure? - single byte 0xBB sent at initialization only
return;
case 0xf1: // Unsure? - single byte 0x4E sent regularly - some sort of watchdog?
return;
default:
#ifdef DEBUG
printf("Unhandled Z80 output on port %u (at PC = %04X)\n", portNum, m_z80.GetPC());
#endif
return;
}
}
void CDriveBoard::ProcessEncoderCmd(void)
{
if (m_prev42Out != m_port42Out || m_prev46Out != m_port46Out)
{
//printf("46 [%02X] / 42 [%02X]\n", m_port46Out, m_port42Out);
switch (m_port46Out)
{
case 0xFB:
// TODO - friction? Sent during power slide. 0xFF = strongest or 0x00?
//SendFriction(m_port42Out);
break;
case 0xFC:
// Centering / uncentering (vibrate)
// Bit 2 = on for centering, off for uncentering
if (m_port42Out&0x04)
{
// Centering
// Bit 7 = on for disable, off for enable
if (m_port42Out&0x80)
{
// Disable centering
SendSelfCenter(0);
}
else
{
// Bits 3-6 = centering strength 0x0-0xF. This is scaled to range 0x0F-0xFF
UINT8 strength = ((m_port42Out&0x78)>>3) * 0x10 + 0xF;
SendSelfCenter(strength);
}
}
else
{
// Uncentering
// Bits 0-1 = data sequence number 0-3
UINT8 seqNum = m_port42Out&0x03;
// Bits 4-7 = data values
UINT16 data = (m_port42Out&0xF0)>>4;
switch (seqNum)
{
case 0: m_uncenterVal1 = data<<4; break;
case 1: m_uncenterVal1 |= data; break;
case 2: m_uncenterVal2 = data<<4; break;
case 3: m_uncenterVal2 |= data; break;
}
if (seqNum == 0 && m_uncenterVal1 == 0)
{
// Disable uncentering
SendVibrate(0);
}
else if (seqNum == 3 && m_uncenterVal1 > 0)
{
// Uncentering - unsure exactly how values sent map to strength or whether they specify some other attributes of effect
// For now just attempting to map them to a sensible value in range 0x00-0xFF
UINT8 strength = ((m_uncenterVal1>>1) - 7) * 0x50 + ((m_uncenterVal2>>1) - 5) * 0x10 + 0xF;
SendVibrate(strength);
}
}
break;
case 0xFD:
// TODO - unsure? Sent as velocity changes, similar to self-centering
break;
case 0xFE:
// Apply constant force to wheel
// Value is: 0x80 = stop motor, 0x81-0xC0 = roll wheel left, 0x40-0x7F = roll wheel right, scale to range -0x80-0x7F
// Note: seems to often output 0x7F or 0x81 for stop motor, so narrowing wheel ranges to 0x40-0x7E and 0x82-0xC0
if (m_port42Out > 0x81)
{
if (m_port42Out <= 0xC0)
SendConstantForce(2 * (0x81 - m_port42Out));
else
SendConstantForce(-0x80);
}
else if (m_port42Out < 0x7F)
{
if (m_port42Out >= 0x40)
SendConstantForce(2 * (0x7F - m_port42Out));
else
SendConstantForce(0x7F);
}
else
SendConstantForce(0);
break;
case 0xFF:
// Stop all effects
if (m_port42Out == 0)
SendStopAll();
break;
default:
//printf("Unknown = 46 [%02X] / 42 [%02X]\n", m_port46Out, m_port42Out);
break;
}
m_prev42Out = m_port42Out;
m_prev46Out = m_port46Out;
}
}
void CDriveBoard::ProcessEncoderCmdJoystick(void)
{
if (m_prev42Out != m_port42Out || m_prev46Out != m_port46Out || m_prev45Out != m_port45Out)
{
switch (m_port46Out)
{
case 0xEE:
// Apply constant force
if (m_port42Out > 0x7f) // X
{
SendConstantForce(2 * (m_port42Out - 0x7f));
}
else if (m_port42Out < 0x7f)
{
SendConstantForce(2 * (m_port42Out - 0x7f));
}
else
{
SendConstantForce(0);
}
if (m_port45Out > 0x7f) // Y
{
SendConstantForceY(-2 * (m_port45Out - 0x7f));
}
else if (m_port45Out < 0x7f)
{
SendConstantForceY(-2 * (m_port45Out - 0x7f));
}
else
{
SendConstantForceY(0);
}
if (m_port42Out == 0x7f && m_port45Out == 0x81)
{
SendSelfCenter(255);
}
else SendSelfCenter(0);
break;
case 0xFF:
// Stop all effects
if (m_port42Out == 0 || m_port45Out == 0)
SendStopAll();
break;
case 0xcc: // init
//42[0B] / 45[0A]
//42[0B] / 45[0B]
//42[FF] / 45[0B]
//42[FF] / 45[FF]
break;
case 0xdd: // init
// 42[FF] / 45[00]
// 42[FF] / 45[FF]
// 42[0A] / 45[00]
// 42[0A] / 45[0A]
break;
case 0xce:
// 42[7F] / 45[08]
// 42[7F] / 45[09]
// 42[7F] / 45[0A]
// 42[7F] / 45[0B]
// 42[7F] / 45[81]
if (m_port42Out == 0x7f && m_port45Out != 0x81) // X
{
SendConstantForce(2 * m_port45Out);
}
if (m_port42Out == 0x7f && m_port45Out == 0x81)
{
SendSelfCenter(255);
}
break;
case 0xec:
// 42[09] / 45[81]
// 42[2A] / 45[81]
// 42[1B] / 45[81]
// 42[7F] / 45[81]
if (m_port45Out == 0x81 && m_port42Out != 0x7f) // Y
{
SendConstantForceY(2 * m_port42Out);
}
if (m_port42Out == 0x7f && m_port45Out == 0x81)
{
SendSelfCenter(255);
}
break;
case 0x00: // init
// 42[FF] / 45[00]
// 42[FF] / 45[FF]
break;
case 0x99: // init
// 42[B0] / 45[B0]
// 42[80] / 45[B0]
// 42[80] / 45[80]
break;
default:
//printf("Unknown = 46 [%02X] / 42 [%02X] / 45 [%02X]\n", m_port46Out, m_port42Out, m_port45Out);
break;
}
m_prev42Out = m_port42Out;
m_prev46Out = m_port46Out;
m_prev45Out = m_port45Out;
}
}
void CDriveBoard::SendStopAll(void)
{
//printf(">> Stop All Effects\n");
ForceFeedbackCmd ffCmd;
ffCmd.id = FFStop;
switch (m_boardType)
{
case Wheel:
m_inputs->steering->SendForceFeedbackCmd(ffCmd);
break;
case Joystick:
m_inputs->analogJoyX->SendForceFeedbackCmd(ffCmd);
m_inputs->analogJoyY->SendForceFeedbackCmd(ffCmd);
break;
}
m_lastConstForce = 0;
m_lastSelfCenter = 0;
m_lastFriction = 0;
m_lastVibrate = 0;
m_lastConstForceY = 0;
}
void CDriveBoard::SendConstantForce(INT8 val)
{
if (val == m_lastConstForce)
return;
/*
if (val > 0)
{
printf(">> Force Right %02X [%8s", val, "");
for (unsigned i = 0; i < 8; i++)
printf(i == 0 || i <= (val + 1) / 16 ? ">" : " ");
printf("]\n");
}
else if (val < 0)
{
printf(">> Force Left %02X [", -val);
for (unsigned i = 0; i < 8; i++)
printf(i == 7 || i >= (val + 128) / 16 ? "<" : " ");
printf("%8s]\n", "");
}
else
printf(">> Stop Force [%16s]\n", "");
*/
ForceFeedbackCmd ffCmd;
ffCmd.id = FFConstantForce;
ffCmd.force = (float)val / (val >= 0 ? 127.0f : 128.0f);
switch (m_boardType)
{
case Wheel:
m_inputs->steering->SendForceFeedbackCmd(ffCmd);
break;
case Joystick:
m_inputs->analogJoyX->SendForceFeedbackCmd(ffCmd);
break;
}
m_lastConstForce = val;
}
void CDriveBoard::SendConstantForceY(INT8 val)
{
if (val == m_lastConstForceY)
return;
ForceFeedbackCmd ffCmd;
ffCmd.id = FFConstantForce;
ffCmd.force = (float)val / (val >= 0 ? 127.0f : 128.0f);
m_inputs->analogJoyY->SendForceFeedbackCmd(ffCmd);
m_lastConstForceY = val;
}
void CDriveBoard::SendSelfCenter(UINT8 val)
{
if (val == m_lastSelfCenter)
return;
/*
if (val == 0)
printf(">> Stop Self-Center\n");
else
printf(">> Self-Center %02X\n", val);
*/
ForceFeedbackCmd ffCmd;
ffCmd.id = FFSelfCenter;
ffCmd.force = (float)val / 255.0f;
switch (m_boardType)
{
case Wheel:
m_inputs->steering->SendForceFeedbackCmd(ffCmd);
break;
case Joystick:
m_inputs->analogJoyX->SendForceFeedbackCmd(ffCmd);
m_inputs->analogJoyY->SendForceFeedbackCmd(ffCmd);
break;
}
m_lastSelfCenter = val;
}
void CDriveBoard::SendFriction(UINT8 val)
{
if (val == m_lastFriction)
return;
/*
if (val == 0)
printf(">> Stop Friction\n");
else
printf(">> Friction %02X\n", val);
*/
ForceFeedbackCmd ffCmd;
ffCmd.id = FFFriction;
ffCmd.force = (float)val / 255.0f;
m_inputs->steering->SendForceFeedbackCmd(ffCmd);
m_lastFriction = val;
}
void CDriveBoard::SendVibrate(UINT8 val)
{
if (val == m_lastVibrate)
return;
/*
if (val == 0)
printf(">> Stop Vibrate\n");
else
printf(">> Vibrate %02X\n", val);
*/
ForceFeedbackCmd ffCmd;
ffCmd.id = FFVibrate;
ffCmd.force = (float)val / 255.0f;
m_inputs->steering->SendForceFeedbackCmd(ffCmd);
m_lastVibrate = val;
}
uint8_t CDriveBoard::ReadADCChannel1()
{
switch (m_boardType)
{
case Wheel:
return 0x00;
break;
case Joystick:
if (m_initialized)
return (UINT8)m_inputs->analogJoyY->value;
else
return 0x80; // If not initialized, return 0x80 so that ffb centering test does not fail
break;
}
}
uint8_t CDriveBoard::ReadADCChannel2()
{
switch (m_boardType)
{
case Wheel:
if (m_initialized)
return (UINT8)m_inputs->steering->value;
else
return 0x80; // If not initialized, return 0x80 so that wheel centering test does not fail
break;
case Joystick:
if (m_initialized)
return (UINT8)m_inputs->analogJoyX->value;
else
return 0x80; // If not initialized, return 0x80 so that ffb centering test does not fail
break;
}
}
uint8_t CDriveBoard::ReadADCChannel3()
{
return 0x80;
}
uint8_t CDriveBoard::ReadADCChannel4()
{
switch (m_boardType)
{
case Wheel:
return 0x00;
break;
case Joystick:
return 0x80;
break;
}
}
CDriveBoard::CDriveBoard(const Util::Config::Node &config)
: m_config(config),
m_attached(false),
m_tmpDisabled(false),
m_simulated(false),
m_dip1(0xCF),
m_dip2(0xFF),
m_rom(NULL),
m_ram(NULL),
m_inputs(NULL),
m_outputs(NULL)
{
DebugLog("Built Drive Board\n");
}
CDriveBoard::~CDriveBoard(void)
{
if (m_ram != NULL)
{
delete[] m_ram;
m_ram = NULL;
}
m_rom = NULL;
m_inputs = NULL;
m_outputs = NULL;
DebugLog("Destroyed Drive Board\n");
}