mirror of
https://github.com/RetroDECK/Supermodel.git
synced 2024-11-24 22:55:40 +00:00
40c8259130
The standard triangle render requires gl 4.1 core, so should work on mac. The quad renderer runs on 4.5 core. The legacy renderer should still work, and when enabled a regular opengl context will be created, which allows functions marked depreciated in the core profiles to still work. This will only work in windows/linux I think. Apple doesn't support this. A GL 4.1 GPU is now the min required spec. Sorry if you have an OLDER gpu. GL 4.1 is over 12 years old now. This is a big update so I apologise in advance if I accidently broke something :]
817 lines
22 KiB
C
817 lines
22 KiB
C
#ifndef _R3DSHADERQUADS_H_
|
|
#define _R3DSHADERQUADS_H_
|
|
|
|
static const char *vertexShaderR3DQuads = R"glsl(
|
|
|
|
#version 450 core
|
|
|
|
// uniforms
|
|
uniform float modelScale;
|
|
uniform mat4 modelMat;
|
|
uniform mat4 projMat;
|
|
uniform bool translatorMap;
|
|
|
|
// attributes
|
|
in vec4 inVertex;
|
|
in vec3 inNormal;
|
|
in vec2 inTexCoord;
|
|
in vec3 inFaceNormal; // used to emulate r3d culling
|
|
in float inFixedShade;
|
|
in vec4 inColour;
|
|
|
|
// outputs to geometry shader
|
|
|
|
out VS_OUT
|
|
{
|
|
vec3 viewVertex;
|
|
vec3 viewNormal; // per vertex normal vector
|
|
vec2 texCoord;
|
|
vec4 color;
|
|
float fixedShade;
|
|
float discardPoly; // can't have varying bool (glsl spec)
|
|
} vs_out;
|
|
|
|
vec4 GetColour(vec4 colour)
|
|
{
|
|
vec4 c = colour;
|
|
|
|
if(translatorMap) {
|
|
c.rgb *= 16.0;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
float CalcBackFace(in vec3 viewVertex)
|
|
{
|
|
vec3 vt = viewVertex; // - vec3(0.0);
|
|
vec3 vn = mat3(modelMat) * inFaceNormal;
|
|
|
|
// dot product of face normal with view direction
|
|
return dot(vt, vn);
|
|
}
|
|
|
|
void main(void)
|
|
{
|
|
vs_out.viewVertex = vec3(modelMat * inVertex);
|
|
vs_out.viewNormal = (mat3(modelMat) * inNormal) / modelScale;
|
|
vs_out.discardPoly = CalcBackFace(vs_out.viewVertex);
|
|
vs_out.color = GetColour(inColour);
|
|
vs_out.texCoord = inTexCoord;
|
|
vs_out.fixedShade = inFixedShade;
|
|
gl_Position = projMat * modelMat * inVertex;
|
|
}
|
|
)glsl";
|
|
|
|
static const char *geometryShaderR3DQuads = R"glsl(
|
|
|
|
#version 450 core
|
|
|
|
layout (lines_adjacency) in;
|
|
layout (triangle_strip, max_vertices = 4) out;
|
|
|
|
in VS_OUT
|
|
{
|
|
vec3 viewVertex;
|
|
vec3 viewNormal; // per vertex normal vector
|
|
vec2 texCoord;
|
|
vec4 color;
|
|
float fixedShade;
|
|
float discardPoly; // can't have varying bool (glsl spec)
|
|
} gs_in[4];
|
|
|
|
out GS_OUT
|
|
{
|
|
noperspective vec2 v[4];
|
|
noperspective float area[4];
|
|
flat float oneOverW[4];
|
|
|
|
//our regular attributes
|
|
flat vec3 viewVertex[4];
|
|
flat vec3 viewNormal[4]; // per vertex normal vector
|
|
flat vec2 texCoord[4];
|
|
flat vec4 color;
|
|
flat float fixedShade[4];
|
|
} gs_out;
|
|
|
|
//a*b - c*d, computed in a stable fashion (Kahan)
|
|
float DifferenceOfProducts(float a, float b, float c, float d)
|
|
{
|
|
precise float cd = c * d;
|
|
precise float err = fma(-c, d, cd);
|
|
precise float dop = fma(a, b, -cd);
|
|
return dop + err;
|
|
}
|
|
|
|
void main(void)
|
|
{
|
|
if(gs_in[0].discardPoly > 0) {
|
|
return; //emulate back face culling here (all vertices in poly have same value)
|
|
}
|
|
|
|
vec2 v[4];
|
|
|
|
for (int i=0; i<4; i++) {
|
|
float oneOverW = 1.0 / gl_in[i].gl_Position.w;
|
|
gs_out.oneOverW[i] = oneOverW;
|
|
v[i] = gl_in[i].gl_Position.xy * oneOverW;
|
|
|
|
// our regular vertex attribs
|
|
gs_out.viewVertex[i] = gs_in[i].viewVertex * oneOverW;
|
|
gs_out.viewNormal[i] = gs_in[i].viewNormal * oneOverW;
|
|
gs_out.texCoord[i] = gs_in[i].texCoord * oneOverW;
|
|
gs_out.fixedShade[i] = gs_in[i].fixedShade * oneOverW;
|
|
}
|
|
|
|
// flat attributes
|
|
gs_out.color = gs_in[0].color;
|
|
|
|
// precompute crossproducts for all vertex combinations to be looked up in loop below for area computation
|
|
precise float cross[4][4];
|
|
for (int i=0; i<4; i++)
|
|
{
|
|
cross[i][i] = 0.0;
|
|
for (int j=i+1; j<4; j++)
|
|
cross[i][j] = DifferenceOfProducts(gl_in[i].gl_Position.x, gl_in[j].gl_Position.y, gl_in[j].gl_Position.x, gl_in[i].gl_Position.y) / (gl_in[i].gl_Position.w * gl_in[j].gl_Position.w);
|
|
}
|
|
for (int i=1; i<4; i++)
|
|
for (int j=0; j<i; j++)
|
|
cross[i][j] = -cross[j][i];
|
|
|
|
for (int i=0; i<4; i++) {
|
|
// Mapping of polygon vertex order to triangle strip vertex order.
|
|
//
|
|
// Quad (lines adjacency) Triangle strip
|
|
// vertex order: vertex order:
|
|
//
|
|
// 1----2 1----3
|
|
// | | ===> | \ |
|
|
// | | | \ |
|
|
// 0----3 0----2
|
|
//
|
|
int reorder[4] = int[]( 1, 0, 2, 3 );
|
|
int ii = reorder[i];
|
|
|
|
for (int j=0; j<4; j++) {
|
|
gs_out.v[j] = v[j] - v[ii];
|
|
int j_next = (j+1) % 4;
|
|
// compute area via shoelace algorithm BUT divided by w afterwards to improve precision!
|
|
// in addition also use Kahans algorithm to further improve precision of the 2D crossproducts
|
|
gs_out.area[j] = cross[j][j_next] + cross[j_next][ii] + cross[ii][j];
|
|
}
|
|
|
|
gl_Position = gl_in[ii].gl_Position;
|
|
|
|
EmitVertex();
|
|
}
|
|
}
|
|
|
|
)glsl";
|
|
|
|
static const char *fragmentShaderR3DQuads1 = R"glsl(
|
|
|
|
#version 450 core
|
|
|
|
uniform usampler2D tex1; // entire texture sheet
|
|
|
|
// texturing
|
|
uniform bool textureEnabled;
|
|
uniform bool microTexture;
|
|
uniform float microTextureScale;
|
|
uniform int microTextureID;
|
|
uniform ivec4 baseTexInfo; // x/y are x,y positions in the texture sheet. z/w are with and height
|
|
uniform int baseTexType;
|
|
uniform bool textureInverted;
|
|
uniform bool textureAlpha;
|
|
uniform bool alphaTest;
|
|
uniform bool discardAlpha;
|
|
uniform ivec2 textureWrapMode;
|
|
|
|
// general
|
|
uniform vec3 fogColour;
|
|
uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)
|
|
uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit
|
|
uniform vec3 spotColor; // spotlight RGB color
|
|
uniform vec3 spotFogColor; // spotlight RGB color on fog
|
|
uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)
|
|
uniform bool lightEnabled; // lighting enabled (1.0) or luminous (0.0), drawn at full intensity
|
|
uniform bool sunClamp; // not used by daytona and la machine guns
|
|
uniform bool intensityClamp; // some games such as daytona and
|
|
uniform bool specularEnabled; // specular enabled
|
|
uniform float specularValue; // specular coefficient
|
|
uniform float shininess; // specular shininess
|
|
uniform float fogIntensity;
|
|
uniform float fogDensity;
|
|
uniform float fogStart;
|
|
uniform float fogAttenuation;
|
|
uniform float fogAmbient;
|
|
uniform bool fixedShading;
|
|
uniform int hardwareStep;
|
|
|
|
// matrices (shared with vertex shader)
|
|
uniform mat4 projMat;
|
|
|
|
//interpolated inputs from geometry shader
|
|
|
|
in GS_OUT
|
|
{
|
|
noperspective vec2 v[4];
|
|
noperspective float area[4];
|
|
flat float oneOverW[4];
|
|
|
|
//our regular attributes
|
|
flat vec3 viewVertex[4];
|
|
flat vec3 viewNormal[4]; // per vertex normal vector
|
|
flat vec2 texCoord[4];
|
|
flat vec4 color;
|
|
flat float fixedShade[4];
|
|
} fs_in;
|
|
|
|
//our calculated vertex attributes from the above
|
|
vec3 fsViewVertex;
|
|
vec3 fsViewNormal;
|
|
vec2 fsTexCoord;
|
|
float fsFixedShade;
|
|
vec4 fsColor;
|
|
|
|
//outputs
|
|
out vec4 outColor;
|
|
|
|
void QuadraticInterpolation()
|
|
{
|
|
vec2 s[4];
|
|
float A[4];
|
|
|
|
for (int i=0; i<4; i++) {
|
|
s[i] = fs_in.v[i];
|
|
A[i] = fs_in.area[i];
|
|
}
|
|
|
|
float D[4];
|
|
float r[4];
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int i_next = (i+1)%4;
|
|
D[i] = dot(s[i], s[i_next]);
|
|
r[i] = length(s[i]);
|
|
if (fs_in.oneOverW[i] < 0.0) { // is w[i] negative?
|
|
r[i] = -r[i];
|
|
}
|
|
}
|
|
|
|
float t[4];
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int i_next = (i+1)%4;
|
|
if(A[i]==0.0) t[i] = 0.0; // check for zero area + div by zero
|
|
else t[i] = (r[i]*r[i_next] - D[i]) / A[i];
|
|
}
|
|
|
|
float uSum = 0.0;
|
|
float u[4];
|
|
|
|
for (uint i=0; i<4; i++) {
|
|
uint i_prev = (i-1)%4;
|
|
u[i] = (t[i_prev] + t[i]) / r[i];
|
|
uSum += u[i];
|
|
}
|
|
|
|
float lambda[4];
|
|
|
|
for (int i=0; i<4; i++) {
|
|
lambda[i] = u[i] / uSum;
|
|
}
|
|
|
|
/* Discard fragments when all the weights are neither all negative nor all positive. */
|
|
|
|
int lambdaSignCount = 0;
|
|
|
|
for (int i=0; i<4; i++) {
|
|
if (fs_in.oneOverW[i] * lambda[i] < 0.0) {
|
|
lambdaSignCount--;
|
|
} else {
|
|
lambdaSignCount++;
|
|
}
|
|
}
|
|
if (lambdaSignCount != 4) {
|
|
if(!gl_HelperInvocation) {
|
|
discard;
|
|
}
|
|
}
|
|
|
|
float interp_oneOverW = 0.0;
|
|
|
|
fsViewVertex = vec3(0.0);
|
|
fsViewNormal = vec3(0.0);
|
|
fsTexCoord = vec2(0.0);
|
|
fsFixedShade = 0.0;
|
|
fsColor = fs_in.color;
|
|
|
|
for (int i=0; i<4; i++) {
|
|
fsViewVertex += lambda[i] * fs_in.viewVertex[i];
|
|
fsViewNormal += lambda[i] * fs_in.viewNormal[i];
|
|
fsTexCoord += lambda[i] * fs_in.texCoord[i];
|
|
fsFixedShade += lambda[i] * fs_in.fixedShade[i];
|
|
interp_oneOverW += lambda[i] * fs_in.oneOverW[i];
|
|
}
|
|
|
|
fsViewVertex /= interp_oneOverW;
|
|
fsViewNormal /= interp_oneOverW;
|
|
fsTexCoord /= interp_oneOverW;
|
|
fsFixedShade /= interp_oneOverW;
|
|
|
|
vec4 vertex;
|
|
float depth;
|
|
|
|
// dirty hack for co-planar polys that really need 100% identical values to depth test correctly
|
|
// the reason we waste cycles and calculate depth value here is because we have run out of vertex attribs
|
|
if(fs_in.oneOverW[0]==fs_in.oneOverW[1] &&
|
|
fs_in.oneOverW[1]==fs_in.oneOverW[2] &&
|
|
fs_in.oneOverW[2]==fs_in.oneOverW[3]) {
|
|
|
|
fsViewVertex.z = fs_in.viewVertex[0].z / fs_in.oneOverW[0];
|
|
vertex = projMat * vec4(fsViewVertex,1.0);
|
|
depth = vertex.z / vertex.w;
|
|
}
|
|
else {
|
|
vertex.z = projMat[2][2] * fsViewVertex.z + projMat[3][2]; // standard projMat * vertex - but just using Z components
|
|
depth = vertex.z * interp_oneOverW;
|
|
}
|
|
|
|
gl_FragDepth = depth * 0.5 + 0.5;
|
|
}
|
|
|
|
vec4 ExtractColour(int type, uint value)
|
|
{
|
|
vec4 c = vec4(0.0);
|
|
|
|
if(type==0) { // T1RGB5
|
|
c.r = float((value >> 10) & 0x1F) / 31.0;
|
|
c.g = float((value >> 5 ) & 0x1F) / 31.0;
|
|
c.b = float((value ) & 0x1F) / 31.0;
|
|
c.a = 1.0 - float((value >> 15) & 0x1);
|
|
}
|
|
else if(type==1) { // Interleaved A4L4 (low byte)
|
|
c.rgb = vec3(float(value&0xF) / 15.0);
|
|
c.a = float((value >> 4) & 0xF) / 15.0;
|
|
}
|
|
else if(type==2) {
|
|
c.a = float(value&0xF) / 15.0;
|
|
c.rgb = vec3(float((value >> 4) & 0xF) / 15.0);
|
|
}
|
|
else if(type==3) {
|
|
c.rgb = vec3(float((value>>8)&0xF) / 15.0);
|
|
c.a = float((value >> 12) & 0xF) / 15.0;
|
|
}
|
|
else if(type==4) {
|
|
c.a = float((value>>8)&0xF) / 15.0;
|
|
c.rgb = vec3(float((value >> 12) & 0xF) / 15.0);
|
|
}
|
|
else if(type==5) {
|
|
c = vec4(float(value&0xFF) / 255.0);
|
|
if(c.a==1.0) { c.a = 0.0; }
|
|
else { c.a = 1.0; }
|
|
}
|
|
else if(type==6) {
|
|
c = vec4(float((value>>8)&0xFF) / 255.0);
|
|
if(c.a==1.0) { c.a = 0.0; }
|
|
else { c.a = 1.0; }
|
|
}
|
|
else if(type==7) { // RGBA4
|
|
c.r = float((value>>12)&0xF) / 15.0;
|
|
c.g = float((value>> 8)&0xF) / 15.0;
|
|
c.b = float((value>> 4)&0xF) / 15.0;
|
|
c.a = float((value>> 0)&0xF) / 15.0;
|
|
}
|
|
else if(type==8) { // low byte, low nibble
|
|
c = vec4(float(value&0xF) / 15.0);
|
|
if(c.a==1.0) { c.a = 0.0; }
|
|
else { c.a = 1.0; }
|
|
}
|
|
else if(type==9) { // low byte, high nibble
|
|
c = vec4(float((value>>4)&0xF) / 15.0);
|
|
if(c.a==1.0) { c.a = 0.0; }
|
|
else { c.a = 1.0; }
|
|
}
|
|
else if(type==10) { // high byte, low nibble
|
|
c = vec4(float((value>>8)&0xF) / 15.0);
|
|
if(c.a==1.0) { c.a = 0.0; }
|
|
else { c.a = 1.0; }
|
|
}
|
|
else if(type==11) { // high byte, high nibble
|
|
c = vec4(float((value>>12)&0xF) / 15.0);
|
|
if(c.a==1.0) { c.a = 0.0; }
|
|
else { c.a = 1.0; }
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
ivec2 GetTexturePosition(int level, ivec2 pos)
|
|
{
|
|
const int mipXBase[] = { 0, 1024, 1536, 1792, 1920, 1984, 2016, 2032, 2040, 2044, 2046, 2047 };
|
|
const int mipYBase[] = { 0, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1023 };
|
|
|
|
int mipDivisor = 1 << level;
|
|
|
|
int page = pos.y / 1024;
|
|
pos.y -= (page * 1024); // remove page from tex y
|
|
|
|
ivec2 retPos;
|
|
retPos.x = mipXBase[level] + (pos.x / mipDivisor);
|
|
retPos.y = mipYBase[level] + (pos.y / mipDivisor);
|
|
|
|
retPos.y += (page * 1024); // add page back to tex y
|
|
|
|
return retPos;
|
|
}
|
|
|
|
ivec2 GetTextureSize(int level, ivec2 size)
|
|
{
|
|
int mipDivisor = 1 << level;
|
|
|
|
return size / mipDivisor;
|
|
}
|
|
|
|
ivec2 GetMicroTexturePos(int id)
|
|
{
|
|
int xCoords[8] = { 0, 0, 128, 128, 0, 0, 128, 128 };
|
|
int yCoords[8] = { 0, 128, 0, 128, 256, 384, 256, 384 };
|
|
|
|
return ivec2(xCoords[id],yCoords[id]);
|
|
}
|
|
|
|
int GetPage(int yCoord)
|
|
{
|
|
return yCoord / 1024;
|
|
}
|
|
|
|
int GetNextPage(int yCoord)
|
|
{
|
|
return (GetPage(yCoord) + 1) & 1;
|
|
}
|
|
|
|
int GetNextPageOffset(int yCoord)
|
|
{
|
|
return GetNextPage(yCoord) * 1024;
|
|
}
|
|
|
|
// wrapping tex coords would be super easy but we combined tex sheets so have to handle wrap around between sheets
|
|
// hardware testing would be useful because i don't know exactly what happens if you try to read outside the texture sheet
|
|
// wrap around is a good guess
|
|
ivec2 WrapTexCoords(ivec2 pos, ivec2 coordinate)
|
|
{
|
|
ivec2 newCoord;
|
|
|
|
newCoord.x = coordinate.x & 2047;
|
|
newCoord.y = coordinate.y;
|
|
|
|
int page = GetPage(pos.y);
|
|
|
|
newCoord.y -= (page * 1024); // remove page
|
|
newCoord.y &= 1023; // wrap around in the same sheet
|
|
newCoord.y += (page * 1024); // add page back
|
|
|
|
return newCoord;
|
|
}
|
|
|
|
float mip_map_level(in vec2 texture_coordinate) // in texel units
|
|
{
|
|
vec2 dx_vtc = dFdx(texture_coordinate);
|
|
vec2 dy_vtc = dFdy(texture_coordinate);
|
|
float delta_max_sqr = max(dot(dx_vtc, dx_vtc), dot(dy_vtc, dy_vtc));
|
|
float mml = 0.5 * log2(delta_max_sqr);
|
|
return max( 0.0, mml );
|
|
}
|
|
|
|
float LinearTexLocations(int wrapMode, float size, float u, out float u0, out float u1)
|
|
{
|
|
float texelSize = 1.0 / size;
|
|
float halfTexelSize = 0.5 / size;
|
|
|
|
if(wrapMode==0) { // repeat
|
|
u = u * size - 0.5;
|
|
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
|
|
u0 = fract(u0);
|
|
u1 = u0 + texelSize;
|
|
u1 = fract(u1);
|
|
|
|
return fract(u); // return weight
|
|
}
|
|
else if(wrapMode==1) { // repeat + clamp
|
|
u = fract(u); // must force into 0-1 to start
|
|
u = u * size - 0.5;
|
|
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
|
|
u1 = u0 + texelSize;
|
|
|
|
if(u0 < 0.0) u0 = 0.0;
|
|
if(u1 >= 1.0) u1 = 1.0 - halfTexelSize;
|
|
|
|
return fract(u); // return weight
|
|
}
|
|
else { // mirror + mirror clamp - both are the same since the edge pixels are repeated anyway
|
|
|
|
float odd = floor(mod(u, 2.0)); // odd values are mirrored
|
|
|
|
if(odd > 0.0) {
|
|
u = 1.0 - fract(u);
|
|
}
|
|
else {
|
|
u = fract(u);
|
|
}
|
|
|
|
u = u * size - 0.5;
|
|
u0 = (floor(u) + 0.5) / size; // + 0.5 offset added to push us into the centre of a pixel, without we'll get rounding errors
|
|
u1 = u0 + texelSize;
|
|
|
|
if(u0 < 0.0) u0 = 0.0;
|
|
if(u1 >= 1.0) u1 = 1.0 - halfTexelSize;
|
|
|
|
return fract(u); // return weight
|
|
}
|
|
}
|
|
|
|
vec4 texBiLinear(usampler2D texSampler, ivec2 wrapMode, vec2 texSize, ivec2 texPos, vec2 texCoord)
|
|
{
|
|
float tx[2], ty[2];
|
|
float a = LinearTexLocations(wrapMode.s, texSize.x, texCoord.x, tx[0], tx[1]);
|
|
float b = LinearTexLocations(wrapMode.t, texSize.y, texCoord.y, ty[0], ty[1]);
|
|
|
|
vec4 p0q0 = ExtractColour(baseTexType,texelFetch(texSampler, WrapTexCoords(texPos,ivec2(vec2(tx[0],ty[0]) * texSize + texPos)), 0).r);
|
|
vec4 p1q0 = ExtractColour(baseTexType,texelFetch(texSampler, WrapTexCoords(texPos,ivec2(vec2(tx[1],ty[0]) * texSize + texPos)), 0).r);
|
|
vec4 p0q1 = ExtractColour(baseTexType,texelFetch(texSampler, WrapTexCoords(texPos,ivec2(vec2(tx[0],ty[1]) * texSize + texPos)), 0).r);
|
|
vec4 p1q1 = ExtractColour(baseTexType,texelFetch(texSampler, WrapTexCoords(texPos,ivec2(vec2(tx[1],ty[1]) * texSize + texPos)), 0).r);
|
|
|
|
if(alphaTest) {
|
|
if(p0q0.a > p1q0.a) { p1q0.rgb = p0q0.rgb; }
|
|
if(p0q0.a > p0q1.a) { p0q1.rgb = p0q0.rgb; }
|
|
|
|
if(p1q0.a > p0q0.a) { p0q0.rgb = p1q0.rgb; }
|
|
if(p1q0.a > p1q1.a) { p1q1.rgb = p1q0.rgb; }
|
|
|
|
if(p0q1.a > p0q0.a) { p0q0.rgb = p0q1.rgb; }
|
|
if(p0q1.a > p1q1.a) { p1q1.rgb = p0q1.rgb; }
|
|
|
|
if(p1q1.a > p0q1.a) { p0q1.rgb = p1q1.rgb; }
|
|
if(p1q1.a > p1q0.a) { p1q0.rgb = p1q1.rgb; }
|
|
}
|
|
|
|
// Interpolation in X direction.
|
|
vec4 pInterp_q0 = mix( p0q0, p1q0, a ); // Interpolates top row in X direction.
|
|
vec4 pInterp_q1 = mix( p0q1, p1q1, a ); // Interpolates bottom row in X direction.
|
|
|
|
return mix( pInterp_q0, pInterp_q1, b ); // Interpolate in Y direction.
|
|
}
|
|
|
|
vec4 textureR3D(usampler2D texSampler, ivec2 wrapMode, ivec2 texSize, ivec2 texPos, vec2 texCoord)
|
|
{
|
|
float numLevels = floor(log2(min(float(texSize.x), float(texSize.y)))); // r3d only generates down to 1:1 for square textures, otherwise its the min dimension
|
|
float fLevel = min(mip_map_level(texCoord * vec2(texSize)), numLevels);
|
|
|
|
if(alphaTest) fLevel *= 0.5;
|
|
else fLevel *= 0.8;
|
|
|
|
int iLevel = int(fLevel);
|
|
|
|
ivec2 texPos0 = GetTexturePosition(iLevel,texPos);
|
|
ivec2 texPos1 = GetTexturePosition(iLevel+1,texPos);
|
|
|
|
ivec2 texSize0 = GetTextureSize(iLevel, texSize);
|
|
ivec2 texSize1 = GetTextureSize(iLevel+1, texSize);
|
|
|
|
vec4 texLevel0 = texBiLinear(texSampler, wrapMode, vec2(texSize0), texPos0, texCoord);
|
|
vec4 texLevel1 = texBiLinear(texSampler, wrapMode, vec2(texSize1), texPos1, texCoord);
|
|
|
|
return mix(texLevel0, texLevel1, fract(fLevel)); // linear blend between our mipmap levels
|
|
}
|
|
|
|
vec4 GetTextureValue()
|
|
{
|
|
vec4 tex1Data = textureR3D(tex1, textureWrapMode, ivec2(baseTexInfo.zw), ivec2(baseTexInfo.xy), fsTexCoord);
|
|
|
|
if(textureInverted) {
|
|
tex1Data.rgb = vec3(1.0) - vec3(tex1Data.rgb);
|
|
}
|
|
|
|
if (microTexture) {
|
|
vec2 scale = (vec2(baseTexInfo.zw) / 128.0) * microTextureScale;
|
|
ivec2 pos = GetMicroTexturePos(microTextureID);
|
|
|
|
// add page offset to microtexture position
|
|
pos.y += GetNextPageOffset(baseTexInfo.y);
|
|
|
|
vec4 tex2Data = textureR3D(tex1, ivec2(0), ivec2(128), pos, fsTexCoord * scale);
|
|
|
|
float lod = mip_map_level(fsTexCoord * scale * vec2(128.0));
|
|
|
|
float blendFactor = max(lod - 1.5, 0.0); // bias -1.5
|
|
blendFactor = min(blendFactor, 1.0); // clamp to max value 1
|
|
blendFactor = (blendFactor + 1.0) / 2.0; // 0.5 - 1 range
|
|
|
|
tex1Data = mix(tex2Data, tex1Data, blendFactor);
|
|
}
|
|
|
|
if (alphaTest) {
|
|
if (tex1Data.a < (32.0/255.0)) {
|
|
discard;
|
|
}
|
|
}
|
|
|
|
if(textureAlpha) {
|
|
if(discardAlpha) { // opaque 1st pass
|
|
if (tex1Data.a < 1.0) {
|
|
discard;
|
|
}
|
|
}
|
|
else { // transparent 2nd pass
|
|
if ((tex1Data.a * fsColor.a) >= 1.0) {
|
|
discard;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (textureAlpha == false) {
|
|
tex1Data.a = 1.0;
|
|
}
|
|
|
|
return tex1Data;
|
|
}
|
|
|
|
void Step15Luminous(inout vec4 colour)
|
|
{
|
|
// luminous polys seem to behave very differently on step 1.5 hardware
|
|
// when fixed shading is enabled the colour is modulated by the vp ambient + fixed shade value
|
|
// when disabled it appears to be multiplied by 1.5, presumably to allow a higher range
|
|
if(hardwareStep==0x15) {
|
|
if(!lightEnabled && textureEnabled) {
|
|
if(fixedShading) {
|
|
colour.rgb *= 1.0 + fsFixedShade + lighting[1].y;
|
|
}
|
|
else {
|
|
colour.rgb *= 1.5;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float CalcFog()
|
|
{
|
|
float z = -fsViewVertex.z;
|
|
float fog = fogIntensity * clamp(fogStart + z * fogDensity, 0.0, 1.0);
|
|
|
|
return fog;
|
|
}
|
|
|
|
float sqr(float a)
|
|
{
|
|
return a*a;
|
|
}
|
|
|
|
float sqr_length(vec2 a)
|
|
{
|
|
return a.x*a.x + a.y*a.y;
|
|
}
|
|
|
|
)glsl";
|
|
|
|
static const char* fragmentShaderR3DQuads2 = R"glsl(
|
|
|
|
void main()
|
|
{
|
|
vec4 tex1Data;
|
|
vec4 colData;
|
|
vec4 finalData;
|
|
vec4 fogData;
|
|
|
|
QuadraticInterpolation(); // calculate our vertex attributes
|
|
|
|
fogData = vec4(fogColour.rgb * fogAmbient, CalcFog());
|
|
tex1Data = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
if(textureEnabled) {
|
|
tex1Data = GetTextureValue();
|
|
}
|
|
|
|
colData = fsColor;
|
|
Step15Luminous(colData); // no-op for step 2.0+
|
|
finalData = tex1Data * colData;
|
|
|
|
if (finalData.a < (1.0/16.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports
|
|
discard;
|
|
}
|
|
|
|
float ellipse;
|
|
ellipse = sqr_length((gl_FragCoord.xy - spotEllipse.xy) / spotEllipse.zw); // decay rate = square of distance from center
|
|
ellipse = 1.0 - ellipse; // invert
|
|
ellipse = max(0.0, ellipse); // clamp
|
|
|
|
// Compute spotlight and apply lighting
|
|
float enable, absExtent, d, inv_r, range;
|
|
|
|
// start of spotlight
|
|
enable = step(spotRange.x, -fsViewVertex.z);
|
|
|
|
if (spotRange.y == 0.0) {
|
|
range = 0.0;
|
|
}
|
|
else {
|
|
absExtent = abs(spotRange.y);
|
|
|
|
d = spotRange.x + absExtent + fsViewVertex.z;
|
|
d = min(d, 0.0);
|
|
|
|
// slope of decay function
|
|
inv_r = 1.0 / (1.0 + absExtent);
|
|
|
|
// inverse-linear falloff
|
|
// Reference: https://imdoingitwrong.wordpress.com/2011/01/31/light-attenuation/
|
|
// y = 1 / (d/r + 1)^2
|
|
range = 1.0 / sqr(d * inv_r - 1.0);
|
|
range *= enable;
|
|
}
|
|
|
|
float lobeEffect = range * ellipse;
|
|
float lobeFogEffect = enable * ellipse;
|
|
|
|
if (lightEnabled) {
|
|
vec3 lightIntensity;
|
|
vec3 sunVector; // sun lighting vector (as reflecting away from vertex)
|
|
float sunFactor; // sun light projection along vertex normal (0.0 to 1.0)
|
|
|
|
// Sun angle
|
|
sunVector = lighting[0];
|
|
|
|
// Compute diffuse factor for sunlight
|
|
if(fixedShading) {
|
|
sunFactor = fsFixedShade;
|
|
}
|
|
else {
|
|
sunFactor = dot(sunVector, fsViewNormal);
|
|
}
|
|
|
|
// Clamp ceil, fix for upscaled models without "modelScale" defined
|
|
sunFactor = clamp(sunFactor,-1.0,1.0);
|
|
|
|
// Optional clamping, value is allowed to be negative
|
|
if(sunClamp) {
|
|
sunFactor = max(sunFactor,0.0);
|
|
}
|
|
|
|
// Total light intensity: sum of all components
|
|
lightIntensity = vec3(sunFactor*lighting[1].x + lighting[1].y); // diffuse + ambient
|
|
|
|
lightIntensity.rgb += spotColor*lobeEffect;
|
|
|
|
// Upper clamp is optional, step 1.5+ games will drive brightness beyond 100%
|
|
if(intensityClamp) {
|
|
lightIntensity = min(lightIntensity,1.0);
|
|
}
|
|
|
|
finalData.rgb *= lightIntensity;
|
|
|
|
// for now assume fixed shading doesn't work with specular
|
|
if (specularEnabled) {
|
|
|
|
float exponent, NdotL, specularFactor;
|
|
vec4 biasIndex, expIndex, multIndex;
|
|
|
|
// Always clamp floor to zero, we don't want deep black areas
|
|
NdotL = max(0.0,sunFactor);
|
|
|
|
expIndex = vec4(8.0, 16.0, 32.0, 64.0);
|
|
multIndex = vec4(2.0, 2.0, 3.0, 4.0);
|
|
biasIndex = vec4(0.95, 0.95, 1.05, 1.0);
|
|
exponent = expIndex[int(shininess)] / biasIndex[int(shininess)];
|
|
|
|
specularFactor = pow(NdotL, exponent);
|
|
specularFactor *= multIndex[int(shininess)];
|
|
specularFactor *= biasIndex[int(shininess)];
|
|
|
|
specularFactor *= specularValue;
|
|
specularFactor *= lighting[1].x;
|
|
|
|
if (colData.a < 1.0) {
|
|
/// Specular hi-light affects translucent polygons alpha channel ///
|
|
finalData.a = max(finalData.a, specularFactor);
|
|
}
|
|
|
|
finalData.rgb += vec3(specularFactor);
|
|
}
|
|
}
|
|
|
|
// Final clamp: we need it for proper shading in dimmed light and dark ambients
|
|
finalData.rgb = min(finalData.rgb, vec3(1.0));
|
|
|
|
// Spotlight on fog
|
|
vec3 lSpotFogColor = spotFogColor * fogAttenuation * fogColour.rgb * lobeFogEffect;
|
|
|
|
// Fog & spotlight applied
|
|
finalData.rgb = mix(finalData.rgb, fogData.rgb + lSpotFogColor, fogData.a);
|
|
|
|
// Write output
|
|
outColor = finalData;
|
|
}
|
|
)glsl";
|
|
|
|
#endif
|