Duckstation/src/core/analog_controller.cpp

821 lines
25 KiB
C++
Raw Normal View History

#include "analog_controller.h"
2020-01-10 03:31:12 +00:00
#include "common/log.h"
#include "common/state_wrapper.h"
#include "common/string_util.h"
#include "host_interface.h"
#include "settings.h"
#include "system.h"
2020-09-17 14:40:54 +00:00
#include <cmath>
Log_SetChannel(AnalogController);
JIT optimizations and refactoring (#675) * CPU/Recompiler: Use rel32 call where possible for no-args * JitCodeBuffer: Support using preallocated buffer * CPU/Recompiler/AArch64: Use bl instead of blr for short branches * CPU/CodeCache: Allocate recompiler buffer in program space This means we don't need 64-bit moves for every call out of the recompiler. * GTE: Don't store as u16 and load as u32 * CPU/Recompiler: Add methods to emit global load/stores * GTE: Convert class to namespace * CPU/Recompiler: Call GTE functions directly * Settings: Turn into a global variable * GPU: Replace local pointers with global * InterruptController: Turn into a global pointer * System: Replace local pointers with global * Timers: Turn into a global instance * DMA: Turn into a global instance * SPU: Turn into a global instance * CDROM: Turn into a global instance * MDEC: Turn into a global instance * Pad: Turn into a global instance * SIO: Turn into a global instance * CDROM: Move audio FIFO to the heap * CPU/Recompiler: Drop ASMFunctions No longer needed since we have code in the same 4GB window. * CPUCodeCache: Turn class into namespace * Bus: Local pointer -> global pointers * CPU: Turn class into namespace * Bus: Turn into namespace * GTE: Store registers in CPU state struct Allows relative addressing on ARM. * CPU/Recompiler: Align code storage to page size * CPU/Recompiler: Fix relative branches on A64 * HostInterface: Local references to global * System: Turn into a namespace, move events out * Add guard pages * Android: Fix build
2020-07-31 07:09:18 +00:00
AnalogController::AnalogController(u32 index) : m_index(index)
{
m_axis_state.fill(0x80);
JIT optimizations and refactoring (#675) * CPU/Recompiler: Use rel32 call where possible for no-args * JitCodeBuffer: Support using preallocated buffer * CPU/Recompiler/AArch64: Use bl instead of blr for short branches * CPU/CodeCache: Allocate recompiler buffer in program space This means we don't need 64-bit moves for every call out of the recompiler. * GTE: Don't store as u16 and load as u32 * CPU/Recompiler: Add methods to emit global load/stores * GTE: Convert class to namespace * CPU/Recompiler: Call GTE functions directly * Settings: Turn into a global variable * GPU: Replace local pointers with global * InterruptController: Turn into a global pointer * System: Replace local pointers with global * Timers: Turn into a global instance * DMA: Turn into a global instance * SPU: Turn into a global instance * CDROM: Turn into a global instance * MDEC: Turn into a global instance * Pad: Turn into a global instance * SIO: Turn into a global instance * CDROM: Move audio FIFO to the heap * CPU/Recompiler: Drop ASMFunctions No longer needed since we have code in the same 4GB window. * CPUCodeCache: Turn class into namespace * Bus: Local pointer -> global pointers * CPU: Turn class into namespace * Bus: Turn into namespace * GTE: Store registers in CPU state struct Allows relative addressing on ARM. * CPU/Recompiler: Align code storage to page size * CPU/Recompiler: Fix relative branches on A64 * HostInterface: Local references to global * System: Turn into a namespace, move events out * Add guard pages * Android: Fix build
2020-07-31 07:09:18 +00:00
Reset();
}
AnalogController::~AnalogController() = default;
ControllerType AnalogController::GetType() const
{
return ControllerType::AnalogController;
}
void AnalogController::Reset()
{
m_command = Command::Idle;
m_command_step = 0;
m_rx_buffer.fill(0x00);
m_tx_buffer.fill(0x00);
m_analog_mode = false;
m_configuration_mode = false;
m_motor_state.fill(0);
m_rumble_unlocked = false;
ResetRumbleConfig();
if (m_force_analog_on_reset)
{
if (g_settings.controller_disable_analog_mode_forcing)
{
g_host_interface->AddOSDMessage(
g_host_interface->TranslateStdString(
"OSDMessage", "Analog mode forcing is disabled by game settings. Controller will start in digital mode."),
10.0f);
}
else
SetAnalogMode(true);
}
}
bool AnalogController::DoState(StateWrapper& sw, bool apply_input_state)
{
if (!Controller::DoState(sw, apply_input_state))
return false;
const bool old_analog_mode = m_analog_mode;
sw.Do(&m_analog_mode);
2019-12-15 13:22:53 +00:00
sw.Do(&m_rumble_unlocked);
sw.DoEx(&m_legacy_rumble_unlocked, 44, false);
sw.Do(&m_configuration_mode);
sw.Do(&m_command_param);
u16 button_state = m_button_state;
sw.DoEx(&button_state, 44, static_cast<u16>(0xFFFF));
if (apply_input_state)
m_button_state = button_state;
else
m_analog_mode = old_analog_mode;
sw.Do(&m_command);
2019-12-15 13:22:53 +00:00
sw.DoEx(&m_rumble_config, 45, {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF});
sw.DoEx(&m_rumble_config_large_motor_index, 45, -1);
sw.DoEx(&m_rumble_config_small_motor_index, 45, -1);
sw.DoEx(&m_analog_toggle_queued, 45, false);
2019-12-15 13:22:53 +00:00
MotorState motor_state = m_motor_state;
sw.Do(&motor_state);
if (sw.IsReading())
{
for (u8 i = 0; i < NUM_MOTORS; i++)
SetMotorState(i, motor_state[i]);
if (old_analog_mode != m_analog_mode)
{
g_host_interface->AddFormattedOSDMessage(
5.0f,
m_analog_mode ?
g_host_interface->TranslateString("AnalogController", "Controller %u switched to analog mode.") :
g_host_interface->TranslateString("AnalogController", "Controller %u switched to digital mode."),
m_index + 1u);
}
2019-12-15 13:22:53 +00:00
}
return true;
}
std::optional<s32> AnalogController::GetAxisCodeByName(std::string_view axis_name) const
{
return StaticGetAxisCodeByName(axis_name);
}
std::optional<s32> AnalogController::GetButtonCodeByName(std::string_view button_name) const
{
return StaticGetButtonCodeByName(button_name);
}
float AnalogController::GetAxisState(s32 axis_code) const
{
if (axis_code < 0 || axis_code >= static_cast<s32>(Axis::Count))
return 0.0f;
// 0..255 -> -1..1
const float value = (((static_cast<float>(m_axis_state[static_cast<s32>(axis_code)]) / 255.0f) * 2.0f) - 1.0f);
return std::clamp(value / m_axis_scale, -1.0f, 1.0f);
}
void AnalogController::SetAxisState(s32 axis_code, float value)
{
if (axis_code < 0 || axis_code >= static_cast<s32>(Axis::Count))
return;
// -1..1 -> 0..255
const float scaled_value = std::clamp(value * m_axis_scale, -1.0f, 1.0f);
const u8 u8_value = static_cast<u8>(std::clamp(std::round(((scaled_value + 1.0f) / 2.0f) * 255.0f), 0.0f, 255.0f));
SetAxisState(static_cast<Axis>(axis_code), u8_value);
}
void AnalogController::SetAxisState(Axis axis, u8 value)
{
2021-01-23 16:52:52 +00:00
if (value != m_axis_state[static_cast<u8>(axis)])
System::SetRunaheadReplayFlag();
m_axis_state[static_cast<u8>(axis)] = value;
}
bool AnalogController::GetButtonState(s32 button_code) const
{
if (button_code < 0 || button_code >= static_cast<s32>(Button::Analog))
return false;
const u16 bit = u16(1) << static_cast<u8>(button_code);
return ((m_button_state & bit) == 0);
}
void AnalogController::SetButtonState(Button button, bool pressed)
{
if (button == Button::Analog)
{
// analog toggle
if (pressed)
{
if (m_command == Command::Idle)
ProcessAnalogModeToggle();
else
m_analog_toggle_queued = true;
}
return;
}
2021-01-23 16:52:52 +00:00
const u16 bit = u16(1) << static_cast<u8>(button);
if (pressed)
2021-01-23 16:52:52 +00:00
{
if (m_button_state & bit)
System::SetRunaheadReplayFlag();
m_button_state &= ~(bit);
}
else
2021-01-23 16:52:52 +00:00
{
if (!(m_button_state & bit))
System::SetRunaheadReplayFlag();
m_button_state |= bit;
}
}
void AnalogController::SetButtonState(s32 button_code, bool pressed)
{
if (button_code < 0 || button_code >= static_cast<s32>(Button::Count))
return;
SetButtonState(static_cast<Button>(button_code), pressed);
}
2020-12-06 05:47:00 +00:00
u32 AnalogController::GetButtonStateBits() const
{
// flip bits, native data is active low
return m_button_state ^ 0xFFFF;
}
std::optional<u32> AnalogController::GetAnalogInputBytes() const
{
return m_axis_state[static_cast<size_t>(Axis::LeftY)] << 24 | m_axis_state[static_cast<size_t>(Axis::LeftX)] << 16 |
m_axis_state[static_cast<size_t>(Axis::RightY)] << 8 | m_axis_state[static_cast<size_t>(Axis::RightX)];
}
2019-12-15 13:22:53 +00:00
u32 AnalogController::GetVibrationMotorCount() const
{
return NUM_MOTORS;
}
float AnalogController::GetVibrationMotorStrength(u32 motor)
{
DebugAssert(motor < NUM_MOTORS);
if (m_motor_state[motor] == 0)
return 0.0f;
// Curve from https://github.com/KrossX/Pokopom/blob/master/Pokopom/Input_XInput.cpp#L210
const double x =
static_cast<double>(std::min<u32>(static_cast<u32>(m_motor_state[motor]) + static_cast<u32>(m_rumble_bias), 255));
const double strength = 0.006474549734772402 * std::pow(x, 3.0) - 1.258165252213538 * std::pow(x, 2.0) +
156.82454281087692 * x + 3.637978807091713e-11;
return static_cast<float>(strength / 65535.0);
2019-12-15 13:22:53 +00:00
}
void AnalogController::ResetTransferState()
{
if (m_analog_toggle_queued)
{
ProcessAnalogModeToggle();
m_analog_toggle_queued = false;
}
m_command = Command::Idle;
m_command_step = 0;
}
2019-12-15 13:22:53 +00:00
void AnalogController::SetAnalogMode(bool enabled)
{
if (m_analog_mode == enabled)
return;
Log_InfoPrintf("Controller %u switched to %s mode.", m_index + 1u, enabled ? "analog" : "digital");
g_host_interface->AddFormattedOSDMessage(
5.0f,
enabled ? g_host_interface->TranslateString("AnalogController", "Controller %u switched to analog mode.") :
g_host_interface->TranslateString("AnalogController", "Controller %u switched to digital mode."),
m_index + 1u);
2019-12-15 13:22:53 +00:00
m_analog_mode = enabled;
}
void AnalogController::ProcessAnalogModeToggle()
{
if (m_analog_locked)
{
g_host_interface->AddFormattedOSDMessage(
5.0f,
m_analog_mode ?
g_host_interface->TranslateString("AnalogController", "Controller %u is locked to analog mode by the game.") :
g_host_interface->TranslateString("AnalogController", "Controller %u is locked to digital mode by the game."),
m_index + 1u);
}
else
{
SetAnalogMode(!m_analog_mode);
// Manually toggling controller mode resets and disables rumble configuration
m_rumble_unlocked = false;
ResetRumbleConfig();
// TODO: Mode switch detection (0x00 returned on certain commands instead of 0x5A)
}
}
2019-12-15 13:22:53 +00:00
void AnalogController::SetMotorState(u8 motor, u8 value)
{
DebugAssert(motor < NUM_MOTORS);
m_motor_state[motor] = value;
}
u8 AnalogController::GetExtraButtonMaskLSB() const
{
if (!m_analog_dpad_in_digital_mode || m_analog_mode || m_configuration_mode)
return 0xFF;
static constexpr u8 NEG_THRESHOLD = static_cast<u8>(128.0f - (127.0 * 0.5f));
static constexpr u8 POS_THRESHOLD = static_cast<u8>(128.0f + (127.0 * 0.5f));
const bool left = (m_axis_state[static_cast<u8>(Axis::LeftX)] <= NEG_THRESHOLD);
const bool right = (m_axis_state[static_cast<u8>(Axis::LeftX)] >= POS_THRESHOLD);
const bool up = (m_axis_state[static_cast<u8>(Axis::LeftY)] <= NEG_THRESHOLD);
const bool down = (m_axis_state[static_cast<u8>(Axis::LeftY)] >= POS_THRESHOLD);
return ~((static_cast<u8>(left) << static_cast<u8>(Button::Left)) |
(static_cast<u8>(right) << static_cast<u8>(Button::Right)) |
(static_cast<u8>(up) << static_cast<u8>(Button::Up)) |
(static_cast<u8>(down) << static_cast<u8>(Button::Down)));
}
void AnalogController::ResetRumbleConfig()
{
m_rumble_config.fill(0xFF);
m_rumble_config_large_motor_index = -1;
m_rumble_config_small_motor_index = -1;
SetMotorState(LargeMotor, 0);
SetMotorState(SmallMotor, 0);
}
void AnalogController::SetMotorStateForConfigIndex(int index, u8 value)
{
if (m_rumble_config_small_motor_index == index)
SetMotorState(SmallMotor, ((value & 0x01) != 0) ? 255 : 0);
else if (m_rumble_config_large_motor_index == index)
SetMotorState(LargeMotor, value);
}
u8 AnalogController::GetResponseNumHalfwords() const
{
if (m_configuration_mode || m_analog_mode)
return 0x3;
return (0x1 + m_digital_mode_extra_halfwords);
}
u8 AnalogController::GetModeID() const
{
if (m_configuration_mode)
return 0xF;
if (m_analog_mode)
return 0x7;
return 0x4;
}
u8 AnalogController::GetIDByte() const
{
return Truncate8((GetModeID() << 4) | GetResponseNumHalfwords());
}
bool AnalogController::Transfer(const u8 data_in, u8* data_out)
{
bool ack;
m_rx_buffer[m_command_step] = data_in;
switch (m_command)
{
case Command::Idle:
{
*data_out = 0xFF;
if (data_in == 0x01)
{
Log_DevPrintf("ACK controller access");
m_command = Command::Ready;
return true;
}
Log_DevPrintf("Unknown data_in = 0x%02X", data_in);
return false;
}
break;
case Command::Ready:
{
if (data_in == 0x42)
{
Assert(m_command_step == 0);
m_response_length = (GetResponseNumHalfwords() + 1) * 2;
m_command = Command::ReadPad;
m_tx_buffer = {GetIDByte(), GetStatusByte(), 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
}
else if (data_in == 0x43)
{
Assert(m_command_step == 0);
m_response_length = (GetResponseNumHalfwords() + 1) * 2;
m_command = Command::ConfigModeSetMode;
m_tx_buffer = {GetIDByte(), GetStatusByte(), 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
}
else if (m_configuration_mode && data_in == 0x44)
{
Assert(m_command_step == 0);
m_response_length = (GetResponseNumHalfwords() + 1) * 2;
m_command = Command::SetAnalogMode;
m_tx_buffer = {GetIDByte(), GetStatusByte(), 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
ResetRumbleConfig();
}
else if (m_configuration_mode && data_in == 0x45)
{
Assert(m_command_step == 0);
m_response_length = (GetResponseNumHalfwords() + 1) * 2;
m_command = Command::GetAnalogMode;
m_tx_buffer = {GetIDByte(), GetStatusByte(), 0x01, 0x02, BoolToUInt8(m_analog_mode), 0x02, 0x01, 0x00};
}
else if (m_configuration_mode && data_in == 0x46)
{
Assert(m_command_step == 0);
m_response_length = (GetResponseNumHalfwords() + 1) * 2;
m_command = Command::Command46;
m_tx_buffer = {GetIDByte(), GetStatusByte(), 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
}
else if (m_configuration_mode && data_in == 0x47)
{
Assert(m_command_step == 0);
m_response_length = (GetResponseNumHalfwords() + 1) * 2;
m_command = Command::Command47;
m_tx_buffer = {GetIDByte(), GetStatusByte(), 0x00, 0x00, 0x02, 0x00, 0x01, 0x00};
}
else if (m_configuration_mode && data_in == 0x4C)
{
Assert(m_command_step == 0);
m_response_length = (GetResponseNumHalfwords() + 1) * 2;
m_command = Command::Command4C;
m_tx_buffer = {GetIDByte(), GetStatusByte(), 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
}
else if (m_configuration_mode && data_in == 0x4D)
{
Assert(m_command_step == 0);
m_response_length = (GetResponseNumHalfwords() + 1) * 2;
m_command = Command::GetSetRumble;
m_tx_buffer = {GetIDByte(), GetStatusByte(), 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
m_rumble_config_large_motor_index = -1;
m_rumble_config_small_motor_index = -1;
}
else
{
if (m_configuration_mode)
Log_ErrorPrintf("Unimplemented config mode command 0x%02X", data_in);
*data_out = 0xFF;
return false;
}
}
break;
case Command::ReadPad:
2019-12-15 13:22:53 +00:00
{
const int rumble_index = m_command_step - 2;
2019-12-15 13:22:53 +00:00
switch (m_command_step)
{
case 2:
{
m_tx_buffer[m_command_step] = Truncate8(m_button_state) & GetExtraButtonMaskLSB();
if (m_rumble_unlocked)
SetMotorStateForConfigIndex(rumble_index, data_in);
}
break;
case 3:
{
m_tx_buffer[m_command_step] = Truncate8(m_button_state >> 8);
if (m_rumble_unlocked)
{
SetMotorStateForConfigIndex(rumble_index, data_in);
}
else
{
bool legacy_rumble_on = (m_rx_buffer[2] & 0xC0) == 0x40 && (m_rx_buffer[3] & 0x01) != 0;
SetMotorState(SmallMotor, legacy_rumble_on ? 255 : 0);
}
}
break;
case 4:
{
if (m_configuration_mode || m_analog_mode)
m_tx_buffer[m_command_step] = m_axis_state[static_cast<u8>(Axis::RightX)];
if (m_rumble_unlocked)
SetMotorStateForConfigIndex(rumble_index, data_in);
}
break;
case 5:
{
if (m_configuration_mode || m_analog_mode)
m_tx_buffer[m_command_step] = m_axis_state[static_cast<u8>(Axis::RightY)];
if (m_rumble_unlocked)
SetMotorStateForConfigIndex(rumble_index, data_in);
}
break;
case 6:
{
if (m_configuration_mode || m_analog_mode)
m_tx_buffer[m_command_step] = m_axis_state[static_cast<u8>(Axis::LeftX)];
if (m_rumble_unlocked)
SetMotorStateForConfigIndex(rumble_index, data_in);
}
break;
case 7:
{
if (m_configuration_mode || m_analog_mode)
m_tx_buffer[m_command_step] = m_axis_state[static_cast<u8>(Axis::LeftY)];
if (m_rumble_unlocked)
SetMotorStateForConfigIndex(rumble_index, data_in);
}
break;
default:
{
}
break;
}
2019-12-15 13:22:53 +00:00
}
break;
case Command::ConfigModeSetMode:
2019-12-15 13:22:53 +00:00
{
if (!m_configuration_mode)
{
switch (m_command_step)
{
case 2:
{
m_tx_buffer[m_command_step] = Truncate8(m_button_state) & GetExtraButtonMaskLSB();
}
break;
case 3:
{
m_tx_buffer[m_command_step] = Truncate8(m_button_state >> 8);
}
break;
case 4:
{
if (m_configuration_mode || m_analog_mode)
m_tx_buffer[m_command_step] = m_axis_state[static_cast<u8>(Axis::RightX)];
}
break;
case 5:
{
if (m_configuration_mode || m_analog_mode)
m_tx_buffer[m_command_step] = m_axis_state[static_cast<u8>(Axis::RightY)];
}
break;
case 6:
{
if (m_configuration_mode || m_analog_mode)
m_tx_buffer[m_command_step] = m_axis_state[static_cast<u8>(Axis::LeftX)];
}
break;
case 7:
{
if (m_configuration_mode || m_analog_mode)
m_tx_buffer[m_command_step] = m_axis_state[static_cast<u8>(Axis::LeftY)];
}
break;
default:
{
}
break;
}
}
if (m_command_step == (static_cast<s32>(m_response_length) - 1))
{
m_rumble_unlocked = true;
m_configuration_mode = (m_rx_buffer[2] == 1);
Log_DevPrintf("0x%02x(%s) config mode", m_rx_buffer[2], m_configuration_mode ? "enter" : "leave");
}
2019-12-15 13:22:53 +00:00
}
break;
case Command::SetAnalogMode:
{
if (m_command_step == 2)
{
Log_DevPrintf("analog mode val 0x%02x", data_in);
if (data_in == 0x00 || data_in == 0x01)
SetAnalogMode((data_in == 0x01));
}
else if (m_command_step == 3)
{
Log_DevPrintf("analog mode lock 0x%02x", data_in);
if (data_in == 0x02 || data_in == 0x03)
m_analog_locked = (data_in == 0x03);
}
}
break;
case Command::GetAnalogMode:
{
// Intentionally empty, analog mode byte is set in reply buffer when command is first received
}
break;
case Command::Command46:
{
if (m_command_step == 2)
{
if (data_in == 0x00)
{
m_tx_buffer[4] = 0x01;
m_tx_buffer[5] = 0x02;
m_tx_buffer[6] = 0x00;
m_tx_buffer[7] = 0x0A;
}
else if (data_in == 0x01)
{
m_tx_buffer[4] = 0x01;
m_tx_buffer[5] = 0x01;
m_tx_buffer[6] = 0x01;
m_tx_buffer[7] = 0x14;
}
}
}
break;
case Command::Command47:
{
if (m_command_step == 2 && data_in != 0x00)
{
m_tx_buffer[4] = 0x00;
m_tx_buffer[5] = 0x00;
m_tx_buffer[6] = 0x00;
m_tx_buffer[7] = 0x00;
}
}
break;
case Command::Command4C:
{
if (m_command_step == 2)
{
if (data_in == 0x00)
m_tx_buffer[5] = 0x04;
else if (data_in == 0x01)
m_tx_buffer[5] = 0x07;
}
}
break;
case Command::GetSetRumble:
{
int rumble_index = m_command_step - 2;
if (rumble_index >= 0)
{
m_tx_buffer[m_command_step] = m_rumble_config[rumble_index];
m_rumble_config[rumble_index] = data_in;
if (data_in == 0x00)
m_rumble_config_small_motor_index = rumble_index;
else if (data_in == 0x01)
m_rumble_config_large_motor_index = rumble_index;
}
if (m_command_step == 7)
{
if (m_rumble_config_large_motor_index == -1)
SetMotorState(LargeMotor, 0);
if (m_rumble_config_small_motor_index == -1)
SetMotorState(SmallMotor, 0);
}
}
break;
DefaultCaseIsUnreachable();
}
*data_out = m_tx_buffer[m_command_step];
m_command_step = (m_command_step + 1) % m_response_length;
ack = (m_command_step == 0) ? false : true;
if (m_command_step == 0)
{
m_command = Command::Idle;
Log_DevPrintf("Rx: %02x %02x %02x %02x %02x %02x %02x %02x", m_rx_buffer[0], m_rx_buffer[1], m_rx_buffer[2],
m_rx_buffer[3], m_rx_buffer[4], m_rx_buffer[5], m_rx_buffer[6], m_rx_buffer[7]);
Log_DevPrintf("Tx: %02x %02x %02x %02x %02x %02x %02x %02x", m_tx_buffer[0], m_tx_buffer[1], m_tx_buffer[2],
m_tx_buffer[3], m_tx_buffer[4], m_tx_buffer[5], m_tx_buffer[6], m_tx_buffer[7]);
m_rx_buffer.fill(0x00);
m_tx_buffer.fill(0x00);
}
return ack;
}
JIT optimizations and refactoring (#675) * CPU/Recompiler: Use rel32 call where possible for no-args * JitCodeBuffer: Support using preallocated buffer * CPU/Recompiler/AArch64: Use bl instead of blr for short branches * CPU/CodeCache: Allocate recompiler buffer in program space This means we don't need 64-bit moves for every call out of the recompiler. * GTE: Don't store as u16 and load as u32 * CPU/Recompiler: Add methods to emit global load/stores * GTE: Convert class to namespace * CPU/Recompiler: Call GTE functions directly * Settings: Turn into a global variable * GPU: Replace local pointers with global * InterruptController: Turn into a global pointer * System: Replace local pointers with global * Timers: Turn into a global instance * DMA: Turn into a global instance * SPU: Turn into a global instance * CDROM: Turn into a global instance * MDEC: Turn into a global instance * Pad: Turn into a global instance * SIO: Turn into a global instance * CDROM: Move audio FIFO to the heap * CPU/Recompiler: Drop ASMFunctions No longer needed since we have code in the same 4GB window. * CPUCodeCache: Turn class into namespace * Bus: Local pointer -> global pointers * CPU: Turn class into namespace * Bus: Turn into namespace * GTE: Store registers in CPU state struct Allows relative addressing on ARM. * CPU/Recompiler: Align code storage to page size * CPU/Recompiler: Fix relative branches on A64 * HostInterface: Local references to global * System: Turn into a namespace, move events out * Add guard pages * Android: Fix build
2020-07-31 07:09:18 +00:00
std::unique_ptr<AnalogController> AnalogController::Create(u32 index)
{
JIT optimizations and refactoring (#675) * CPU/Recompiler: Use rel32 call where possible for no-args * JitCodeBuffer: Support using preallocated buffer * CPU/Recompiler/AArch64: Use bl instead of blr for short branches * CPU/CodeCache: Allocate recompiler buffer in program space This means we don't need 64-bit moves for every call out of the recompiler. * GTE: Don't store as u16 and load as u32 * CPU/Recompiler: Add methods to emit global load/stores * GTE: Convert class to namespace * CPU/Recompiler: Call GTE functions directly * Settings: Turn into a global variable * GPU: Replace local pointers with global * InterruptController: Turn into a global pointer * System: Replace local pointers with global * Timers: Turn into a global instance * DMA: Turn into a global instance * SPU: Turn into a global instance * CDROM: Turn into a global instance * MDEC: Turn into a global instance * Pad: Turn into a global instance * SIO: Turn into a global instance * CDROM: Move audio FIFO to the heap * CPU/Recompiler: Drop ASMFunctions No longer needed since we have code in the same 4GB window. * CPUCodeCache: Turn class into namespace * Bus: Local pointer -> global pointers * CPU: Turn class into namespace * Bus: Turn into namespace * GTE: Store registers in CPU state struct Allows relative addressing on ARM. * CPU/Recompiler: Align code storage to page size * CPU/Recompiler: Fix relative branches on A64 * HostInterface: Local references to global * System: Turn into a namespace, move events out * Add guard pages * Android: Fix build
2020-07-31 07:09:18 +00:00
return std::make_unique<AnalogController>(index);
}
std::optional<s32> AnalogController::StaticGetAxisCodeByName(std::string_view axis_name)
{
#define AXIS(name) \
if (axis_name == #name) \
{ \
return static_cast<s32>(ZeroExtend32(static_cast<u8>(Axis::name))); \
}
AXIS(LeftX);
AXIS(LeftY);
AXIS(RightX);
AXIS(RightY);
return std::nullopt;
#undef AXIS
}
std::optional<s32> AnalogController::StaticGetButtonCodeByName(std::string_view button_name)
{
#define BUTTON(name) \
if (button_name == #name) \
{ \
return static_cast<s32>(ZeroExtend32(static_cast<u8>(Button::name))); \
}
BUTTON(Select);
BUTTON(L3);
BUTTON(R3);
BUTTON(Start);
BUTTON(Up);
BUTTON(Right);
BUTTON(Down);
BUTTON(Left);
BUTTON(L2);
BUTTON(R2);
BUTTON(L1);
BUTTON(R1);
BUTTON(Triangle);
BUTTON(Circle);
BUTTON(Cross);
BUTTON(Square);
BUTTON(Analog);
return std::nullopt;
#undef BUTTON
}
Controller::AxisList AnalogController::StaticGetAxisNames()
{
return {{TRANSLATABLE("AnalogController", "LeftX"), static_cast<s32>(Axis::LeftX), AxisType::Full},
{TRANSLATABLE("AnalogController", "LeftY"), static_cast<s32>(Axis::LeftY), AxisType::Full},
{TRANSLATABLE("AnalogController", "RightX"), static_cast<s32>(Axis::RightX), AxisType::Full},
{TRANSLATABLE("AnalogController", "RightY"), static_cast<s32>(Axis::RightY), AxisType::Full}};
}
Controller::ButtonList AnalogController::StaticGetButtonNames()
{
return {{TRANSLATABLE("AnalogController", "Up"), static_cast<s32>(Button::Up)},
{TRANSLATABLE("AnalogController", "Down"), static_cast<s32>(Button::Down)},
{TRANSLATABLE("AnalogController", "Left"), static_cast<s32>(Button::Left)},
{TRANSLATABLE("AnalogController", "Right"), static_cast<s32>(Button::Right)},
{TRANSLATABLE("AnalogController", "Select"), static_cast<s32>(Button::Select)},
{TRANSLATABLE("AnalogController", "Start"), static_cast<s32>(Button::Start)},
{TRANSLATABLE("AnalogController", "Triangle"), static_cast<s32>(Button::Triangle)},
{TRANSLATABLE("AnalogController", "Cross"), static_cast<s32>(Button::Cross)},
{TRANSLATABLE("AnalogController", "Circle"), static_cast<s32>(Button::Circle)},
{TRANSLATABLE("AnalogController", "Square"), static_cast<s32>(Button::Square)},
{TRANSLATABLE("AnalogController", "L1"), static_cast<s32>(Button::L1)},
{TRANSLATABLE("AnalogController", "L2"), static_cast<s32>(Button::L2)},
{TRANSLATABLE("AnalogController", "R1"), static_cast<s32>(Button::R1)},
{TRANSLATABLE("AnalogController", "R2"), static_cast<s32>(Button::R2)},
{TRANSLATABLE("AnalogController", "L3"), static_cast<s32>(Button::L3)},
{TRANSLATABLE("AnalogController", "R3"), static_cast<s32>(Button::R3)},
{TRANSLATABLE("AnalogController", "Analog"), static_cast<s32>(Button::Analog)}};
}
u32 AnalogController::StaticGetVibrationMotorCount()
{
return NUM_MOTORS;
}
Controller::SettingList AnalogController::StaticGetSettings()
{
static constexpr std::array<SettingInfo, 4> settings = {
{{SettingInfo::Type::Boolean, "ForceAnalogOnReset", TRANSLATABLE("AnalogController", "Force Analog Mode on Reset"),
TRANSLATABLE("AnalogController", "Forces the controller to analog mode when the console is reset/powered on. May "
"cause issues with games, so it is recommended to leave this option off."),
"false"},
{SettingInfo::Type::Boolean, "AnalogDPadInDigitalMode",
TRANSLATABLE("AnalogController", "Use Analog Sticks for D-Pad in Digital Mode"),
TRANSLATABLE("AnalogController",
"Allows you to use the analog sticks to control the d-pad in digital mode, as well as the buttons."),
"false"},
{SettingInfo::Type::Float, "AxisScale", TRANSLATABLE("AnalogController", "Analog Axis Scale"),
TRANSLATABLE(
"AnalogController",
"Sets the analog stick axis scaling factor. A value between 1.30 and 1.40 is recommended when using recent "
"controllers, e.g. DualShock 4, Xbox One Controller."),
"1.00f", "0.01f", "1.50f", "0.01f"},
{SettingInfo::Type::Integer, "VibrationBias", TRANSLATABLE("AnalogController", "Vibration Bias"),
TRANSLATABLE("AnalogController", "Sets the rumble bias value. If rumble in some games is too weak or not "
"functioning, try increasing this value."),
"8", "0", "255", "1"}}};
return SettingList(settings.begin(), settings.end());
}
JIT optimizations and refactoring (#675) * CPU/Recompiler: Use rel32 call where possible for no-args * JitCodeBuffer: Support using preallocated buffer * CPU/Recompiler/AArch64: Use bl instead of blr for short branches * CPU/CodeCache: Allocate recompiler buffer in program space This means we don't need 64-bit moves for every call out of the recompiler. * GTE: Don't store as u16 and load as u32 * CPU/Recompiler: Add methods to emit global load/stores * GTE: Convert class to namespace * CPU/Recompiler: Call GTE functions directly * Settings: Turn into a global variable * GPU: Replace local pointers with global * InterruptController: Turn into a global pointer * System: Replace local pointers with global * Timers: Turn into a global instance * DMA: Turn into a global instance * SPU: Turn into a global instance * CDROM: Turn into a global instance * MDEC: Turn into a global instance * Pad: Turn into a global instance * SIO: Turn into a global instance * CDROM: Move audio FIFO to the heap * CPU/Recompiler: Drop ASMFunctions No longer needed since we have code in the same 4GB window. * CPUCodeCache: Turn class into namespace * Bus: Local pointer -> global pointers * CPU: Turn class into namespace * Bus: Turn into namespace * GTE: Store registers in CPU state struct Allows relative addressing on ARM. * CPU/Recompiler: Align code storage to page size * CPU/Recompiler: Fix relative branches on A64 * HostInterface: Local references to global * System: Turn into a namespace, move events out * Add guard pages * Android: Fix build
2020-07-31 07:09:18 +00:00
void AnalogController::LoadSettings(const char* section)
{
JIT optimizations and refactoring (#675) * CPU/Recompiler: Use rel32 call where possible for no-args * JitCodeBuffer: Support using preallocated buffer * CPU/Recompiler/AArch64: Use bl instead of blr for short branches * CPU/CodeCache: Allocate recompiler buffer in program space This means we don't need 64-bit moves for every call out of the recompiler. * GTE: Don't store as u16 and load as u32 * CPU/Recompiler: Add methods to emit global load/stores * GTE: Convert class to namespace * CPU/Recompiler: Call GTE functions directly * Settings: Turn into a global variable * GPU: Replace local pointers with global * InterruptController: Turn into a global pointer * System: Replace local pointers with global * Timers: Turn into a global instance * DMA: Turn into a global instance * SPU: Turn into a global instance * CDROM: Turn into a global instance * MDEC: Turn into a global instance * Pad: Turn into a global instance * SIO: Turn into a global instance * CDROM: Move audio FIFO to the heap * CPU/Recompiler: Drop ASMFunctions No longer needed since we have code in the same 4GB window. * CPUCodeCache: Turn class into namespace * Bus: Local pointer -> global pointers * CPU: Turn class into namespace * Bus: Turn into namespace * GTE: Store registers in CPU state struct Allows relative addressing on ARM. * CPU/Recompiler: Align code storage to page size * CPU/Recompiler: Fix relative branches on A64 * HostInterface: Local references to global * System: Turn into a namespace, move events out * Add guard pages * Android: Fix build
2020-07-31 07:09:18 +00:00
Controller::LoadSettings(section);
m_force_analog_on_reset = g_host_interface->GetBoolSettingValue(section, "ForceAnalogOnReset", false);
m_analog_dpad_in_digital_mode = g_host_interface->GetBoolSettingValue(section, "AnalogDPadInDigitalMode", false);
m_axis_scale =
std::clamp(std::abs(g_host_interface->GetFloatSettingValue(section, "AxisScale", 1.00f)), 0.01f, 1.50f);
m_rumble_bias =
static_cast<u8>(std::min<u32>(g_host_interface->GetIntSettingValue(section, "VibrationBias", 8), 255));
}