Duckstation/src/common/timer.cpp

278 lines
6.1 KiB
C++
Raw Normal View History

2020-01-10 03:31:12 +00:00
#include "timer.h"
#include <cstdio>
#include <cstdlib>
2020-01-10 03:31:12 +00:00
2021-06-28 10:16:48 +00:00
#ifdef _WIN32
2020-01-10 03:31:12 +00:00
#include "windows_headers.h"
#else
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
2020-01-10 03:31:12 +00:00
#endif
namespace Common {
2021-06-28 10:16:48 +00:00
#ifdef _WIN32
2020-01-10 03:31:12 +00:00
static double s_counter_frequency;
static bool s_counter_initialized = false;
2021-01-28 10:11:31 +00:00
// This gets leaked... oh well.
static thread_local HANDLE s_sleep_timer;
static thread_local bool s_sleep_timer_created = false;
static HANDLE GetSleepTimer()
{
if (s_sleep_timer_created)
return s_sleep_timer;
s_sleep_timer_created = true;
s_sleep_timer = CreateWaitableTimer(nullptr, TRUE, nullptr);
if (!s_sleep_timer)
std::fprintf(stderr, "CreateWaitableTimer() failed, falling back to Sleep()\n");
return s_sleep_timer;
}
2020-01-10 03:31:12 +00:00
Timer::Value Timer::GetValue()
{
// even if this races, it should still result in the same value..
if (!s_counter_initialized)
{
LARGE_INTEGER Freq;
QueryPerformanceFrequency(&Freq);
s_counter_frequency = static_cast<double>(Freq.QuadPart) / 1000000000.0;
s_counter_initialized = true;
}
Timer::Value ReturnValue;
QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(&ReturnValue));
return ReturnValue;
}
double Timer::ConvertValueToNanoseconds(Timer::Value value)
{
return (static_cast<double>(value) / s_counter_frequency);
}
double Timer::ConvertValueToMilliseconds(Timer::Value value)
{
return ((static_cast<double>(value) / s_counter_frequency) / 1000000.0);
}
double Timer::ConvertValueToSeconds(Timer::Value value)
{
return ((static_cast<double>(value) / s_counter_frequency) / 1000000000.0);
}
Timer::Value Timer::ConvertSecondsToValue(double s)
{
return static_cast<Value>((s * 1000000000.0) * s_counter_frequency);
}
Timer::Value Timer::ConvertMillisecondsToValue(double ms)
{
return static_cast<Value>((ms * 1000000.0) * s_counter_frequency);
}
Timer::Value Timer::ConvertNanosecondsToValue(double ns)
{
return static_cast<Value>(ns * s_counter_frequency);
}
2021-01-28 10:11:31 +00:00
void Timer::SleepUntil(Value value, bool exact)
{
if (exact)
{
while (GetValue() < value)
SleepUntil(value, false);
}
else
{
const std::int64_t diff = static_cast<std::int64_t>(value - GetValue());
if (diff <= 0)
return;
HANDLE timer = GetSleepTimer();
if (timer)
{
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
LARGE_INTEGER fti;
fti.LowPart = ft.dwLowDateTime;
fti.HighPart = ft.dwHighDateTime;
fti.QuadPart += diff;
if (SetWaitableTimer(timer, &fti, 0, nullptr, nullptr, FALSE))
{
2021-01-28 10:11:31 +00:00
WaitForSingleObject(timer, INFINITE);
return;
}
2021-01-28 10:11:31 +00:00
}
// falling back to sleep... bad.
Sleep(static_cast<DWORD>(static_cast<std::uint64_t>(diff) / 1000000));
}
}
2020-01-10 03:31:12 +00:00
2021-01-28 10:11:31 +00:00
#else
2020-01-10 03:31:12 +00:00
Timer::Value Timer::GetValue()
{
struct timespec tv;
clock_gettime(CLOCK_MONOTONIC, &tv);
return ((Value)tv.tv_nsec + (Value)tv.tv_sec * 1000000000);
}
double Timer::ConvertValueToNanoseconds(Timer::Value value)
{
return static_cast<double>(value);
}
double Timer::ConvertValueToMilliseconds(Timer::Value value)
{
return (static_cast<double>(value) / 1000000.0);
}
double Timer::ConvertValueToSeconds(Timer::Value value)
{
return (static_cast<double>(value) / 1000000000.0);
}
Timer::Value Timer::ConvertSecondsToValue(double s)
{
return static_cast<Value>(s * 1000000000.0);
}
Timer::Value Timer::ConvertMillisecondsToValue(double ms)
{
return static_cast<Value>(ms * 1000000.0);
}
Timer::Value Timer::ConvertNanosecondsToValue(double ns)
{
return static_cast<Value>(ns);
}
2021-01-28 10:11:31 +00:00
void Timer::SleepUntil(Value value, bool exact)
2020-01-10 03:31:12 +00:00
{
2021-01-28 10:11:31 +00:00
if (exact)
{
while (GetValue() < value)
SleepUntil(value, false);
}
else
{
// Apple doesn't have TIMER_ABSTIME, so fall back to nanosleep in such a case.
#ifdef __APPLE__
const Value current_time = GetValue();
if (value <= current_time)
return;
const Value diff = value - current_time;
struct timespec ts;
ts.tv_sec = diff / UINT64_C(1000000000);
ts.tv_nsec = diff % UINT64_C(1000000000);
nanosleep(&ts, nullptr);
#else
struct timespec ts;
ts.tv_sec = value / UINT64_C(1000000000);
ts.tv_nsec = value % UINT64_C(1000000000);
clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &ts, nullptr);
2020-01-10 03:31:12 +00:00
#endif
2021-01-28 10:11:31 +00:00
}
}
2020-01-10 03:31:12 +00:00
#endif
Timer::Timer()
{
Reset();
}
void Timer::Reset()
{
m_tvStartValue = GetValue();
}
double Timer::GetTimeSeconds() const
{
return ConvertValueToSeconds(GetValue() - m_tvStartValue);
}
double Timer::GetTimeMilliseconds() const
{
return ConvertValueToMilliseconds(GetValue() - m_tvStartValue);
}
double Timer::GetTimeNanoseconds() const
{
return ConvertValueToNanoseconds(GetValue() - m_tvStartValue);
}
void Timer::BusyWait(std::uint64_t ns)
{
const Value start = GetValue();
const Value end = start + ConvertNanosecondsToValue(static_cast<double>(ns));
if (end < start)
{
// overflow, unlikely
while (GetValue() > end)
;
}
while (GetValue() < end)
;
}
void Timer::HybridSleep(std::uint64_t ns, std::uint64_t min_sleep_time)
{
const std::uint64_t start = GetValue();
const std::uint64_t end = start + ConvertNanosecondsToValue(static_cast<double>(ns));
if (end < start)
{
// overflow, unlikely
while (GetValue() > end)
;
}
std::uint64_t current = GetValue();
while (current < end)
{
const std::uint64_t remaining = end - current;
if (remaining >= min_sleep_time)
NanoSleep(min_sleep_time);
current = GetValue();
}
}
void Timer::NanoSleep(std::uint64_t ns)
{
2021-06-28 10:16:48 +00:00
#if defined(_WIN32)
2021-01-28 10:11:31 +00:00
HANDLE timer = GetSleepTimer();
if (timer)
{
LARGE_INTEGER due_time;
due_time.QuadPart = -static_cast<std::int64_t>(static_cast<std::uint64_t>(ns) / 100u);
2021-01-28 10:11:31 +00:00
if (SetWaitableTimer(timer, &due_time, 0, nullptr, nullptr, FALSE))
WaitForSingleObject(timer, INFINITE);
else
std::fprintf(stderr, "SetWaitableTimer() failed: %08X\n", GetLastError());
}
else
{
Sleep(static_cast<std::uint32_t>(ns / 1000000));
}
#elif defined(__ANDROID__)
// Round down to the next millisecond.
usleep(static_cast<useconds_t>((ns / 1000000) * 1000));
#else
const struct timespec ts = {0, static_cast<long>(ns)};
nanosleep(&ts, nullptr);
#endif
}
} // namespace Common