Add a new port of crt-royale.fx (#3260)
- A new port of crt-royale. More faithful to original. It uses the same mask textures. - The only thing not ported is the original geometry pass. It was replaced by geom curvature code. - It's configured for 1080p displays. 4k displays need to adjust param mask_triad_size_desired from 3.0 to 4.0. OBS: It's up to you decide if the two versions should be maintained.
494
data/resources/shaders/reshade/Shaders/crt/crt-royale.fx
Normal file
|
@ -0,0 +1,494 @@
|
|||
#include "ReShade.fxh"
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
// Ported to Duckstation (ReShade specs) by Hyllian (2024).
|
||||
|
||||
// Set shader params for all passes here:
|
||||
|
||||
uniform float crt_gamma <
|
||||
ui_type = "drag";
|
||||
ui_min = 1.0;
|
||||
ui_max = 5.0;
|
||||
ui_step = 0.025;
|
||||
ui_label = "Simulated CRT Gamma";
|
||||
> = 2.5;
|
||||
|
||||
uniform float lcd_gamma <
|
||||
ui_type = "drag";
|
||||
ui_min = 1.0;
|
||||
ui_max = 5.0;
|
||||
ui_step = 0.025;
|
||||
ui_label = "Your Display Gamma";
|
||||
> = 2.2;
|
||||
|
||||
uniform float levels_contrast <
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_max = 4.0;
|
||||
ui_step = 0.015625;
|
||||
ui_label = "Contrast";
|
||||
> = 1.0;
|
||||
|
||||
uniform float halation_weight <
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_max = 1.0;
|
||||
ui_step = 0.005;
|
||||
ui_label = "Halation Weight";
|
||||
> = 0.0;
|
||||
|
||||
uniform float diffusion_weight <
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_max = 1.0;
|
||||
ui_step = 0.005;
|
||||
ui_label = "Diffusion Weight";
|
||||
> = 0.075;
|
||||
|
||||
uniform float bloom_underestimate_levels <
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_max = 5.0;
|
||||
ui_step = 0.01;
|
||||
ui_label = "Bloom - Underestimate Levels";
|
||||
> = 0.8;
|
||||
|
||||
uniform float bloom_excess <
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_max = 1.0;
|
||||
ui_step = 0.005;
|
||||
ui_label = "Bloom - Excess";
|
||||
> = 0.0;
|
||||
|
||||
uniform float beam_min_sigma <
|
||||
ui_type = "drag";
|
||||
ui_min = 0.005;
|
||||
ui_max = 1.0;
|
||||
ui_step = 0.005;
|
||||
ui_label = "Beam - Min Sigma";
|
||||
> = 0.02;
|
||||
|
||||
uniform float beam_max_sigma <
|
||||
ui_type = "drag";
|
||||
ui_min = 0.005;
|
||||
ui_max = 1.0;
|
||||
ui_step = 0.005;
|
||||
ui_label = "Beam - Max Sigma";
|
||||
> = 0.3;
|
||||
|
||||
uniform float beam_spot_power <
|
||||
ui_type = "drag";
|
||||
ui_min = 0.01;
|
||||
ui_max = 16.0;
|
||||
ui_step = 0.01;
|
||||
ui_label = "Beam - Spot Power";
|
||||
> = 0.33;
|
||||
|
||||
uniform float beam_min_shape <
|
||||
ui_type = "drag";
|
||||
ui_min = 2.0;
|
||||
ui_max = 32.0;
|
||||
ui_step = 0.1;
|
||||
ui_label = "Beam - Min Shape";
|
||||
> = 2.0;
|
||||
|
||||
uniform float beam_max_shape <
|
||||
ui_type = "drag";
|
||||
ui_min = 2.0;
|
||||
ui_max = 32.0;
|
||||
ui_step = 0.1;
|
||||
ui_label = "Beam - Max Shape";
|
||||
> = 4.0;
|
||||
|
||||
uniform float beam_shape_power <
|
||||
ui_type = "drag";
|
||||
ui_min = 0.01;
|
||||
ui_max = 16.0;
|
||||
ui_step = 0.01;
|
||||
ui_label = "Beam - Shape Power";
|
||||
> = 0.25;
|
||||
|
||||
uniform int beam_horiz_filter <
|
||||
ui_type = "combo";
|
||||
ui_items = "Quilez (fast)\0Gaussian (slow)\0Lanczos (medium)\0";
|
||||
ui_label = "Beam - Horiz Filter";
|
||||
> = 0;
|
||||
|
||||
uniform float beam_horiz_sigma <
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_max = 0.67;
|
||||
ui_step = 0.005;
|
||||
ui_label = "Beam - Horiz Sigma";
|
||||
> = 0.35;
|
||||
|
||||
uniform float beam_horiz_linear_rgb_weight <
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_max = 1.0;
|
||||
ui_step = 0.01;
|
||||
ui_label = "Beam - Horiz Linear RGB Weight";
|
||||
> = 1.0;
|
||||
|
||||
uniform float convergence_offset_x_r <
|
||||
ui_type = "drag";
|
||||
ui_min = -4.0;
|
||||
ui_max = 4.0;
|
||||
ui_step = 0.05;
|
||||
ui_label = "Convergence - Offset X Red";
|
||||
> = 0.0;
|
||||
|
||||
uniform float convergence_offset_x_g <
|
||||
ui_type = "drag";
|
||||
ui_min = -4.0;
|
||||
ui_max = 4.0;
|
||||
ui_step = 0.05;
|
||||
ui_label = "Convergence - Offset X Green";
|
||||
> = 0.0;
|
||||
|
||||
uniform float convergence_offset_x_b <
|
||||
ui_type = "drag";
|
||||
ui_min = -4.0;
|
||||
ui_max = 4.0;
|
||||
ui_step = 0.05;
|
||||
ui_label = "Convergence - Offset X Blue";
|
||||
> = 0.0;
|
||||
|
||||
uniform float convergence_offset_y_r <
|
||||
ui_type = "drag";
|
||||
ui_min = -2.0;
|
||||
ui_max = 2.0;
|
||||
ui_step = 0.05;
|
||||
ui_label = "Convergence - Offset Y Red";
|
||||
> = 0.0;
|
||||
|
||||
uniform float convergence_offset_y_g <
|
||||
ui_type = "drag";
|
||||
ui_min = -2.0;
|
||||
ui_max = 2.0;
|
||||
ui_step = 0.05;
|
||||
ui_label = "Convergence - Offset Y Green";
|
||||
> = 0.0;
|
||||
|
||||
uniform float convergence_offset_y_b <
|
||||
ui_type = "drag";
|
||||
ui_min = -2.0;
|
||||
ui_max = 2.0;
|
||||
ui_step = 0.05;
|
||||
ui_label = "Convergence - Offset Y Blue";
|
||||
> = 0.0;
|
||||
|
||||
uniform int mask_type <
|
||||
ui_type = "combo";
|
||||
ui_items = "Aperture Grille\0Slot Mask\0Shadow Mask\0";
|
||||
ui_label = "Mask - Type";
|
||||
> = 0;
|
||||
|
||||
uniform float mask_sample_mode_desired <
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_max = 2.0;
|
||||
ui_step = 1.;
|
||||
ui_label = "Mask - Sample Mode";
|
||||
> = 0.0;
|
||||
|
||||
uniform float mask_specify_num_triads <
|
||||
ui_type = "drag";
|
||||
ui_min = 0.0;
|
||||
ui_max = 1.0;
|
||||
ui_step = 1.0;
|
||||
ui_label = "Mask - Specify Number of Triads";
|
||||
> = 0.0;
|
||||
|
||||
uniform float mask_triad_size_desired <
|
||||
ui_type = "drag";
|
||||
ui_min = 1.0;
|
||||
ui_max = 18.0;
|
||||
ui_step = 0.125;
|
||||
ui_label = "Mask - Triad Size Desired";
|
||||
> = 3.0;
|
||||
|
||||
uniform float mask_num_triads_desired <
|
||||
ui_type = "drag";
|
||||
ui_min = 342.0;
|
||||
ui_max = 1920.0;
|
||||
ui_step = 1.0;
|
||||
ui_label = "Mask - Number of Triads Desired";
|
||||
> = 480.0;
|
||||
|
||||
uniform bool interlace_detect <
|
||||
ui_type = "radio";
|
||||
ui_label = "Enable Interlacing Detection";
|
||||
ui_category = "Interlacing";
|
||||
> = true;
|
||||
|
||||
uniform bool interlace_bff <
|
||||
ui_type = "radio";
|
||||
ui_label = "Bottom Field First";
|
||||
ui_category = "Interlacing";
|
||||
> = false;
|
||||
|
||||
uniform bool interlace_1080i <
|
||||
ui_type = "radio";
|
||||
ui_label = "Detect 1080i";
|
||||
ui_category = "Interlacing";
|
||||
> = false;
|
||||
|
||||
|
||||
uniform float FrameCount < source = "framecount"; >;
|
||||
uniform float2 BufferToViewportRatio < source = "buffer_to_viewport_ratio"; >;
|
||||
uniform float2 InternalPixelSize < source = "internal_pixel_size"; >;
|
||||
uniform float2 NativePixelSize < source = "native_pixel_size"; >;
|
||||
uniform float2 NormalizedInternalPixelSize < source = "normalized_internal_pixel_size"; >;
|
||||
uniform float2 NormalizedNativePixelSize < source = "normalized_native_pixel_size"; >;
|
||||
uniform float UpscaleMultiplier < source = "upscale_multiplier"; >;
|
||||
uniform float2 ViewportSize < source = "viewportsize"; >;
|
||||
uniform float ViewportWidth < source = "viewportwidth"; >;
|
||||
uniform float ViewportHeight < source = "viewportheight"; >;
|
||||
|
||||
#include "../misc/include/geom.fxh"
|
||||
|
||||
#define VIEWPORT_SIZE (ViewportSize*BufferToViewportRatio)
|
||||
#define TEXTURE_SIZE (1.0/NormalizedNativePixelSize)
|
||||
|
||||
#define ORIG_LINEARIZED_texture_size TEXTURE_SIZE
|
||||
#define VERTICAL_SCANLINES_texture_size TEXTURE_SIZE
|
||||
#define BLOOM_APPROX_texture_size TEXTURE_SIZE
|
||||
#define BLUR9FAST_VERTICAL_texture_size TEXTURE_SIZE
|
||||
#define HALATION_BLUR_texture_size TEXTURE_SIZE
|
||||
#define MASK_RESIZE_VERT_texture_size TEXTURE_SIZE
|
||||
#define MASK_RESIZE_texture_size float2(64.0,0.0625*((VIEWPORT_SIZE).y))
|
||||
#define MASKED_SCANLINES_texture_size (0.0625*VIEWPORT_SIZE)
|
||||
#define BRIGHTPASS_texture_size VIEWPORT_SIZE
|
||||
#define BLOOM_VERTICAL_texture_size VIEWPORT_SIZE
|
||||
#define BLOOM_HORIZONTAL_texture_size VIEWPORT_SIZE
|
||||
|
||||
#define ORIG_LINEARIZED_video_size ORIG_LINEARIZED_texture_size
|
||||
#define VERTICAL_SCANLINES_video_size VERTICAL_SCANLINES_texture_size
|
||||
#define BLOOM_APPROX_video_size BLOOM_APPROX_texture_size
|
||||
#define BLUR9FAST_VERTICAL_video_size BLUR9FAST_VERTICAL_texture_size
|
||||
#define HALATION_BLUR_video_size HALATION_BLUR_texture_size
|
||||
#define MASK_RESIZE_VERT_video_size MASK_RESIZE_VERT_texture_size
|
||||
#define MASK_RESIZE_video_size MASK_RESIZE_texture_size
|
||||
#define MASKED_SCANLINES_video_size MASKED_SCANLINES_texture_size
|
||||
#define BRIGHTPASS_video_size BRIGHTPASS_texture_size
|
||||
#define BLOOM_VERTICAL_video_size BLOOM_VERTICAL_texture_size
|
||||
#define BLOOM_HORIZONTAL_video_size BLOOM_HORIZONTAL_texture_size
|
||||
|
||||
#define video_size texture_size
|
||||
|
||||
|
||||
texture2D tmask_grille_texture_small < source = "crt-royale/TileableLinearApertureGrille15Wide8And5d5SpacingResizeTo64.png"; > {Width=64.0;Height=64.0;MipLevels=0;};
|
||||
texture2D tmask_slot_texture_small < source = "crt-royale/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacingResizeTo64.png"; > {Width=64.0;Height=64.0;MipLevels=0;};
|
||||
texture2D tmask_shadow_texture_small < source = "crt-royale/TileableLinearShadowMaskEDPResizeTo64.png"; > {Width=64.0;Height=64.0;MipLevels=0;};
|
||||
|
||||
texture2D tmask_grille_texture_large < source = "crt-royale/TileableLinearApertureGrille15Wide8And5d5Spacing.png"; > {Width=512.0;Height=512.0;MipLevels=4;};
|
||||
texture2D tmask_slot_texture_large < source = "crt-royale/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing.png"; > {Width=512.0;Height=512.0;MipLevels=4;};
|
||||
texture2D tmask_shadow_texture_large < source = "crt-royale/TileableLinearShadowMaskEDP.png"; > {Width=512.0;Height=512.0;MipLevels=4;};
|
||||
|
||||
sampler2D mask_grille_texture_small { Texture = tmask_grille_texture_small; AddressU = REPEAT; AddressV = REPEAT; MinFilter = POINT; MagFilter = POINT;};
|
||||
sampler2D mask_slot_texture_small { Texture = tmask_slot_texture_small; AddressU = REPEAT; AddressV = REPEAT; MinFilter = POINT; MagFilter = POINT;};
|
||||
sampler2D mask_shadow_texture_small { Texture = tmask_shadow_texture_small; AddressU = REPEAT; AddressV = REPEAT; MinFilter = POINT; MagFilter = POINT;};
|
||||
|
||||
sampler2D mask_grille_texture_large { Texture = tmask_grille_texture_large; AddressU = REPEAT; AddressV = REPEAT; MinFilter = POINT; MagFilter = POINT;};
|
||||
sampler2D mask_slot_texture_large { Texture = tmask_slot_texture_large; AddressU = REPEAT; AddressV = REPEAT; MinFilter = POINT; MagFilter = POINT;};
|
||||
sampler2D mask_shadow_texture_large { Texture = tmask_shadow_texture_large; AddressU = REPEAT; AddressV = REPEAT; MinFilter = POINT; MagFilter = POINT;};
|
||||
|
||||
|
||||
#ifndef DEBUG_PASSES
|
||||
#define DEBUG_PASSES 11
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
texture2D tORIG_LINEARIZED{Width=BUFFER_WIDTH;Height=BUFFER_HEIGHT;Format=RGBA16f;};
|
||||
sampler2D ORIG_LINEARIZED{Texture=tORIG_LINEARIZED;AddressU=BORDER;AddressV=BORDER;AddressW=BORDER;MagFilter=LINEAR;MinFilter=LINEAR;};
|
||||
|
||||
#if (DEBUG_PASSES > 1)
|
||||
texture2D tVERTICAL_SCANLINES{Width=BUFFER_WIDTH;Height=BUFFER_HEIGHT;Format=RGBA16f;};
|
||||
sampler2D VERTICAL_SCANLINES{Texture=tVERTICAL_SCANLINES;AddressU=BORDER;AddressV=BORDER;AddressW=BORDER;MagFilter=LINEAR;MinFilter=LINEAR;};
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 2)
|
||||
texture2D tBLOOM_APPROX{Width=BUFFER_WIDTH;Height=BUFFER_HEIGHT;Format=RGBA16f;};
|
||||
sampler2D BLOOM_APPROX{Texture=tBLOOM_APPROX;AddressU=BORDER;AddressV=BORDER;AddressW=BORDER;MagFilter=LINEAR;MinFilter=LINEAR;};
|
||||
#endif
|
||||
|
||||
#if (DEBUG_PASSES > 3)
|
||||
// Need checking if it's really necessary to rendertarget.
|
||||
texture2D tBLUR9FAST_VERTICAL{Width=BUFFER_WIDTH;Height=BUFFER_HEIGHT;Format=RGBA16f;};
|
||||
sampler2D BLUR9FAST_VERTICAL{Texture=tBLUR9FAST_VERTICAL;AddressU=BORDER;AddressV=BORDER;AddressW=BORDER;MagFilter=LINEAR;MinFilter=LINEAR;};
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 4)
|
||||
|
||||
texture2D tHALATION_BLUR{Width=BUFFER_WIDTH;Height=BUFFER_HEIGHT;Format=RGBA16f;};
|
||||
sampler2D HALATION_BLUR{Texture=tHALATION_BLUR;AddressU=BORDER;AddressV=BORDER;AddressW=BORDER;MagFilter=LINEAR;MinFilter=LINEAR;};
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 5)
|
||||
|
||||
texture2D tMASK_RESIZE_VERTICAL{Width=64.0;Height=BUFFER_HEIGHT*0.0625;Format=RGBA8;};
|
||||
sampler2D MASK_RESIZE_VERTICAL{Texture=tMASK_RESIZE_VERTICAL;AddressU=BORDER;AddressV=BORDER;AddressW=BORDER;MagFilter=POINT;MinFilter=POINT;};
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 6)
|
||||
|
||||
texture2D tMASK_RESIZE{Width=BUFFER_WIDTH*0.0625;Height=BUFFER_HEIGHT*0.0625;Format=RGBA8;};
|
||||
sampler2D MASK_RESIZE{Texture=tMASK_RESIZE;AddressU=BORDER;AddressV=BORDER;AddressW=BORDER;MagFilter=POINT;MinFilter=POINT;};
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 7)
|
||||
|
||||
texture2D tMASKED_SCANLINES{Width=BUFFER_WIDTH;Height=BUFFER_HEIGHT;Format=RGBA16f;};
|
||||
sampler2D MASKED_SCANLINES{Texture=tMASKED_SCANLINES;AddressU=BORDER;AddressV=BORDER;AddressW=BORDER;MagFilter=LINEAR;MinFilter=LINEAR;};
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 8)
|
||||
|
||||
texture2D tBRIGHTPASS{Width=BUFFER_WIDTH;Height=BUFFER_HEIGHT;Format=RGBA16f;};
|
||||
sampler2D BRIGHTPASS{Texture=tBRIGHTPASS;AddressU=BORDER;AddressV=BORDER;AddressW=BORDER;MagFilter=LINEAR;MinFilter=LINEAR;};
|
||||
#endif
|
||||
|
||||
#if (DEBUG_PASSES > 9)
|
||||
texture2D tBLOOM_VERTICAL{Width=BUFFER_WIDTH;Height=BUFFER_HEIGHT;Format=RGBA16f;};
|
||||
sampler2D BLOOM_VERTICAL{Texture=tBLOOM_VERTICAL;AddressU=BORDER;AddressV=BORDER;AddressW=BORDER;MagFilter=LINEAR;MinFilter=LINEAR;};
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#include "crt-royale/src/crt-royale-first-pass-linearize-crt-gamma-bob-fields.fxh"
|
||||
|
||||
#if (DEBUG_PASSES > 1)
|
||||
#include "crt-royale/src/crt-royale-scanlines-vertical-interlacing.fxh"
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 2)
|
||||
#include "crt-royale/src/crt-royale-bloom-approx.fxh"
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 3)
|
||||
#include "crt-royale/src/blur9fast-vertical.fxh"
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 4)
|
||||
#include "crt-royale/src/blur9fast-horizontal.fxh"
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 5)
|
||||
#include "crt-royale/src/crt-royale-mask-resize-vertical.fxh"
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 6)
|
||||
#include "crt-royale/src/crt-royale-mask-resize-horizontal.fxh"
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 7)
|
||||
#include "crt-royale/src/crt-royale-scanlines-horizontal-apply-mask.fxh"
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 8)
|
||||
#include "crt-royale/src/crt-royale-brightpass.fxh"
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 9)
|
||||
#include "crt-royale/src/crt-royale-bloom-vertical.fxh"
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 10)
|
||||
#include "crt-royale/src/crt-royale-bloom-horizontal-reconstitute.fxh"
|
||||
#endif
|
||||
|
||||
|
||||
technique CRT_Royale
|
||||
{
|
||||
pass
|
||||
{
|
||||
VertexShader = VS_Linearize;
|
||||
PixelShader = PS_Linearize;
|
||||
RenderTarget = tORIG_LINEARIZED;
|
||||
}
|
||||
#if (DEBUG_PASSES > 1)
|
||||
pass
|
||||
{
|
||||
VertexShader = VS_Scanlines_Vertical_Interlacing;
|
||||
PixelShader = PS_Scanlines_Vertical_Interlacing;
|
||||
RenderTarget = tVERTICAL_SCANLINES;
|
||||
}
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 2)
|
||||
pass
|
||||
{
|
||||
VertexShader = VS_Bloom_Approx;
|
||||
PixelShader = PS_Bloom_Approx;
|
||||
RenderTarget = tBLOOM_APPROX;
|
||||
}
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 3)
|
||||
pass
|
||||
{
|
||||
VertexShader = VS_Blur9Fast_Vertical;
|
||||
PixelShader = PS_Blur9Fast_Vertical;
|
||||
RenderTarget = tBLUR9FAST_VERTICAL;
|
||||
}
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 4)
|
||||
pass
|
||||
{
|
||||
VertexShader = VS_Blur9Fast_Horizontal;
|
||||
PixelShader = PS_Blur9Fast_Horizontal;
|
||||
RenderTarget = tHALATION_BLUR;
|
||||
}
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 5)
|
||||
pass
|
||||
{
|
||||
VertexShader = VS_Mask_Resize_Vertical;
|
||||
PixelShader = PS_Mask_Resize_Vertical;
|
||||
RenderTarget = tMASK_RESIZE_VERTICAL;
|
||||
}
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 6)
|
||||
pass
|
||||
{
|
||||
VertexShader = VS_Mask_Resize_Horizontal;
|
||||
PixelShader = PS_Mask_Resize_Horizontal;
|
||||
RenderTarget = tMASK_RESIZE;
|
||||
}
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 7)
|
||||
pass
|
||||
{
|
||||
VertexShader = VS_Scanlines_Horizontal_Apply_Mask;
|
||||
PixelShader = PS_Scanlines_Horizontal_Apply_Mask;
|
||||
RenderTarget = tMASKED_SCANLINES;
|
||||
}
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 8)
|
||||
pass
|
||||
{
|
||||
VertexShader = VS_Brightpass;
|
||||
PixelShader = PS_Brightpass;
|
||||
RenderTarget = tBRIGHTPASS;
|
||||
}
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 9)
|
||||
pass
|
||||
{
|
||||
VertexShader = VS_Bloom_Vertical;
|
||||
PixelShader = PS_Bloom_Vertical;
|
||||
RenderTarget = tBLOOM_VERTICAL;
|
||||
}
|
||||
#endif
|
||||
#if (DEBUG_PASSES > 10)
|
||||
pass
|
||||
{
|
||||
VertexShader = VS_Bloom_Horizontal;
|
||||
PixelShader = PS_Bloom_Horizontal;
|
||||
}
|
||||
#endif
|
||||
}
|
|
@ -0,0 +1,280 @@
|
|||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 2, June 1991
|
||||
|
||||
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
License is intended to guarantee your freedom to share and change free
|
||||
software--to make sure the software is free for all its users. This
|
||||
General Public License applies to most of the Free Software
|
||||
Foundation's software and to any other program whose authors commit to
|
||||
using it. (Some other Free Software Foundation software is covered by
|
||||
the GNU Lesser General Public License instead.) You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
this service if you wish), that you receive source code or can get it
|
||||
if you want it, that you can change the software or use pieces of it
|
||||
in new free programs; and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
anyone to deny you these rights or to ask you to surrender the rights.
|
||||
These restrictions translate to certain responsibilities for you if you
|
||||
distribute copies of the software, or if you modify it.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must give the recipients all the rights that
|
||||
you have. You must make sure that they, too, receive or can get the
|
||||
source code. And you must show them these terms so they know their
|
||||
rights.
|
||||
|
||||
We protect your rights with two steps: (1) copyright the software, and
|
||||
(2) offer you this license which gives you legal permission to copy,
|
||||
distribute and/or modify the software.
|
||||
|
||||
Also, for each author's protection and ours, we want to make certain
|
||||
that everyone understands that there is no warranty for this free
|
||||
software. If the software is modified by someone else and passed on, we
|
||||
want its recipients to know that what they have is not the original, so
|
||||
that any problems introduced by others will not reflect on the original
|
||||
authors' reputations.
|
||||
|
||||
Finally, any free program is threatened constantly by software
|
||||
patents. We wish to avoid the danger that redistributors of a free
|
||||
program will individually obtain patent licenses, in effect making the
|
||||
program proprietary. To prevent this, we have made it clear that any
|
||||
patent must be licensed for everyone's free use or not licensed at all.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. This License applies to any program or other work which contains
|
||||
a notice placed by the copyright holder saying it may be distributed
|
||||
under the terms of this General Public License. The "Program", below,
|
||||
refers to any such program or work, and a "work based on the Program"
|
||||
means either the Program or any derivative work under copyright law:
|
||||
that is to say, a work containing the Program or a portion of it,
|
||||
either verbatim or with modifications and/or translated into another
|
||||
language. (Hereinafter, translation is included without limitation in
|
||||
the term "modification".) Each licensee is addressed as "you".
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running the Program is not restricted, and the output from the Program
|
||||
is covered only if its contents constitute a work based on the
|
||||
Program (independent of having been made by running the Program).
|
||||
Whether that is true depends on what the Program does.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Program's
|
||||
source code as you receive it, in any medium, provided that you
|
||||
conspicuously and appropriately publish on each copy an appropriate
|
||||
copyright notice and disclaimer of warranty; keep intact all the
|
||||
notices that refer to this License and to the absence of any warranty;
|
||||
and give any other recipients of the Program a copy of this License
|
||||
along with the Program.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy, and
|
||||
you may at your option offer warranty protection in exchange for a fee.
|
||||
|
||||
2. You may modify your copy or copies of the Program or any portion
|
||||
of it, thus forming a work based on the Program, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
|
||||
a) You must cause the modified files to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
|
||||
b) You must cause any work that you distribute or publish, that in
|
||||
whole or in part contains or is derived from the Program or any
|
||||
part thereof, to be licensed as a whole at no charge to all third
|
||||
parties under the terms of this License.
|
||||
|
||||
c) If the modified program normally reads commands interactively
|
||||
when run, you must cause it, when started running for such
|
||||
interactive use in the most ordinary way, to print or display an
|
||||
announcement including an appropriate copyright notice and a
|
||||
notice that there is no warranty (or else, saying that you provide
|
||||
a warranty) and that users may redistribute the program under
|
||||
these conditions, and telling the user how to view a copy of this
|
||||
License. (Exception: if the Program itself is interactive but
|
||||
does not normally print such an announcement, your work based on
|
||||
the Program is not required to print an announcement.)
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Program,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Program, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote it.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Program.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Program
|
||||
with the Program (or with a work based on the Program) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
|
||||
3. You may copy and distribute the Program (or a work based on it,
|
||||
under Section 2) in object code or executable form under the terms of
|
||||
Sections 1 and 2 above provided that you also do one of the following:
|
||||
|
||||
a) Accompany it with the complete corresponding machine-readable
|
||||
source code, which must be distributed under the terms of Sections
|
||||
1 and 2 above on a medium customarily used for software interchange; or,
|
||||
|
||||
b) Accompany it with a written offer, valid for at least three
|
||||
years, to give any third party, for a charge no more than your
|
||||
cost of physically performing source distribution, a complete
|
||||
machine-readable copy of the corresponding source code, to be
|
||||
distributed under the terms of Sections 1 and 2 above on a medium
|
||||
customarily used for software interchange; or,
|
||||
|
||||
c) Accompany it with the information you received as to the offer
|
||||
to distribute corresponding source code. (This alternative is
|
||||
allowed only for noncommercial distribution and only if you
|
||||
received the program in object code or executable form with such
|
||||
an offer, in accord with Subsection b above.)
|
||||
|
||||
The source code for a work means the preferred form of the work for
|
||||
making modifications to it. For an executable work, complete source
|
||||
code means all the source code for all modules it contains, plus any
|
||||
associated interface definition files, plus the scripts used to
|
||||
control compilation and installation of the executable. However, as a
|
||||
special exception, the source code distributed need not include
|
||||
anything that is normally distributed (in either source or binary
|
||||
form) with the major components (compiler, kernel, and so on) of the
|
||||
operating system on which the executable runs, unless that component
|
||||
itself accompanies the executable.
|
||||
|
||||
If distribution of executable or object code is made by offering
|
||||
access to copy from a designated place, then offering equivalent
|
||||
access to copy the source code from the same place counts as
|
||||
distribution of the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
|
||||
4. You may not copy, modify, sublicense, or distribute the Program
|
||||
except as expressly provided under this License. Any attempt
|
||||
otherwise to copy, modify, sublicense or distribute the Program is
|
||||
void, and will automatically terminate your rights under this License.
|
||||
However, parties who have received copies, or rights, from you under
|
||||
this License will not have their licenses terminated so long as such
|
||||
parties remain in full compliance.
|
||||
|
||||
5. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Program or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Program (or any work based on the
|
||||
Program), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Program or works based on it.
|
||||
|
||||
6. Each time you redistribute the Program (or any work based on the
|
||||
Program), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute or modify the Program subject to
|
||||
these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties to
|
||||
this License.
|
||||
|
||||
7. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Program at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Program by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Program.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under
|
||||
any particular circumstance, the balance of the section is intended to
|
||||
apply and the section as a whole is intended to apply in other
|
||||
circumstances.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system, which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
|
||||
8. If the distribution and/or use of the Program is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Program under this License
|
||||
may add an explicit geographical distribution limitation excluding
|
||||
those countries, so that distribution is permitted only in or among
|
||||
countries not thus excluded. In such case, this License incorporates
|
||||
the limitation as if written in the body of this License.
|
||||
|
||||
9. The Free Software Foundation may publish revised and/or new versions
|
||||
of the General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Program
|
||||
specifies a version number of this License which applies to it and "any
|
||||
later version", you have the option of following the terms and conditions
|
||||
either of that version or of any later version published by the Free
|
||||
Software Foundation. If the Program does not specify a version number of
|
||||
this License, you may choose any version ever published by the Free Software
|
||||
Foundation.
|
||||
|
||||
10. If you wish to incorporate parts of the Program into other free
|
||||
programs whose distribution conditions are different, write to the author
|
||||
to ask for permission. For software which is copyrighted by the Free
|
||||
Software Foundation, write to the Free Software Foundation; we sometimes
|
||||
make exceptions for this. Our decision will be guided by the two goals
|
||||
of preserving the free status of all derivatives of our free software and
|
||||
of promoting the sharing and reuse of software generally.
|
||||
|
||||
NO WARRANTY
|
||||
|
||||
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
|
||||
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
|
||||
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
|
||||
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
|
||||
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
|
||||
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
|
||||
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
|
||||
REPAIR OR CORRECTION.
|
||||
|
||||
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
|
||||
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
||||
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
|
||||
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
|
||||
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
|
||||
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
|
||||
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGES.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
|
@ -0,0 +1,249 @@
|
|||
#ifndef BIND_SHADER_PARAMS_H
|
||||
#define BIND_SHADER_PARAMS_H
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
||||
|
||||
#include "helper-functions-and-macros.fxh"
|
||||
#include "user-settings.fxh"
|
||||
#include "derived-settings-and-constants.fxh"
|
||||
|
||||
// Override some parameters for gamma-management.h and tex2Dantialias.h:
|
||||
#define OVERRIDE_DEVICE_GAMMA
|
||||
static const float gba_gamma = 3.5; // Irrelevant but necessary to define.
|
||||
#define ANTIALIAS_OVERRIDE_BASICS
|
||||
#define ANTIALIAS_OVERRIDE_PARAMETERS
|
||||
|
||||
// Disable runtime shader params if the user doesn't explicitly want them.
|
||||
// Static constants will be defined in place of uniforms of the same name.
|
||||
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
|
||||
#undef PARAMETER_UNIFORM
|
||||
#endif
|
||||
|
||||
// Bind option names to shader parameter uniforms or static constants.
|
||||
#ifdef PARAMETER_UNIFORM
|
||||
uniform float crt_gamma;
|
||||
uniform float lcd_gamma;
|
||||
uniform float levels_contrast;
|
||||
uniform float halation_weight;
|
||||
uniform float diffusion_weight;
|
||||
uniform float bloom_underestimate_levels;
|
||||
uniform float bloom_excess;
|
||||
uniform float beam_min_sigma;
|
||||
uniform float beam_max_sigma;
|
||||
uniform float beam_spot_power;
|
||||
uniform float beam_min_shape;
|
||||
uniform float beam_max_shape;
|
||||
uniform float beam_shape_power;
|
||||
uniform float beam_horiz_sigma;
|
||||
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
uniform float beam_horiz_filter;
|
||||
uniform float beam_horiz_linear_rgb_weight;
|
||||
#else
|
||||
static const float beam_horiz_filter = clamp(beam_horiz_filter_static, 0.0, 2.0);
|
||||
static const float beam_horiz_linear_rgb_weight = clamp(beam_horiz_linear_rgb_weight_static, 0.0, 1.0);
|
||||
#endif
|
||||
uniform float convergence_offset_x_r;
|
||||
uniform float convergence_offset_x_g;
|
||||
uniform float convergence_offset_x_b;
|
||||
uniform float convergence_offset_y_r;
|
||||
uniform float convergence_offset_y_g;
|
||||
uniform float convergence_offset_y_b;
|
||||
#ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
uniform float mask_type;
|
||||
#else
|
||||
static const float mask_type = clamp(mask_type_static, 0.0, 2.0);
|
||||
#endif
|
||||
uniform float mask_sample_mode_desired;
|
||||
uniform float mask_specify_num_triads;
|
||||
uniform float mask_triad_size_desired;
|
||||
uniform float mask_num_triads_desired;
|
||||
uniform float aa_subpixel_r_offset_x_runtime;
|
||||
uniform float aa_subpixel_r_offset_y_runtime;
|
||||
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
||||
uniform float aa_cubic_c;
|
||||
uniform float aa_gauss_sigma;
|
||||
#else
|
||||
static const float aa_cubic_c = aa_cubic_c_static; // Clamp to [0, 4]?
|
||||
static const float aa_gauss_sigma = max(FIX_ZERO(0.0), aa_gauss_sigma_static); // Clamp to [FIXZERO(0), 1]?
|
||||
#endif
|
||||
uniform float geom_mode_runtime;
|
||||
uniform float geom_radius;
|
||||
uniform float geom_view_dist;
|
||||
uniform float geom_tilt_angle_x;
|
||||
uniform float geom_tilt_angle_y;
|
||||
uniform float geom_aspect_ratio_x;
|
||||
uniform float geom_aspect_ratio_y;
|
||||
uniform float geom_overscan_x;
|
||||
uniform float geom_overscan_y;
|
||||
uniform float border_size;
|
||||
uniform float border_darkness;
|
||||
uniform float border_compress;
|
||||
uniform float interlace_bff;
|
||||
uniform float interlace_1080i;
|
||||
#else
|
||||
// Use constants from user-settings.h, and limit ranges appropriately:
|
||||
/* static const float crt_gamma = macro_max(0.0, crt_gamma_static);
|
||||
static const float lcd_gamma = macro_max(0.0, lcd_gamma_static);
|
||||
static const float levels_contrast = macro_clamp(levels_contrast_static, 0.0, 4.0);
|
||||
static const float halation_weight = macro_clamp(halation_weight_static, 0.0, 1.0);
|
||||
static const float diffusion_weight = macro_clamp(diffusion_weight_static, 0.0, 1.0);
|
||||
static const float bloom_underestimate_levels = macro_max(FIX_ZERO(0.0), bloom_underestimate_levels_static);
|
||||
static const float bloom_excess = macro_clamp(bloom_excess_static, 0.0, 1.0);
|
||||
static const float beam_min_sigma = macro_max(FIX_ZERO(0.0), beam_min_sigma_static);
|
||||
static const float beam_max_sigma = macro_max(beam_min_sigma, beam_max_sigma_static);
|
||||
static const float beam_spot_power = macro_max(beam_spot_power_static, 0.0);
|
||||
static const float beam_min_shape = macro_max(2.0, beam_min_shape_static);
|
||||
static const float beam_max_shape = macro_max(beam_min_shape, beam_max_shape_static);
|
||||
static const float beam_shape_power = macro_max(0.0, beam_shape_power_static);
|
||||
static const float beam_horiz_filter = macro_clamp(beam_horiz_filter_static, 0.0, 2.0);
|
||||
static const float beam_horiz_sigma = macro_max(FIX_ZERO(0.0), beam_horiz_sigma_static);
|
||||
static const float beam_horiz_linear_rgb_weight = macro_clamp(beam_horiz_linear_rgb_weight_static, 0.0, 1.0);
|
||||
*/ // Unpack static vector elements to match scalar uniforms:
|
||||
/* static const float convergence_offset_x_r = macro_clamp(convergence_offsets_r_static.x, -4.0, 4.0);
|
||||
static const float convergence_offset_x_g = macro_clamp(convergence_offsets_g_static.x, -4.0, 4.0);
|
||||
static const float convergence_offset_x_b = macro_clamp(convergence_offsets_b_static.x, -4.0, 4.0);
|
||||
static const float convergence_offset_y_r = macro_clamp(convergence_offsets_r_static.y, -4.0, 4.0);
|
||||
static const float convergence_offset_y_g = macro_clamp(convergence_offsets_g_static.y, -4.0, 4.0);
|
||||
static const float convergence_offset_y_b = macro_clamp(convergence_offsets_b_static.y, -4.0, 4.0);
|
||||
static const float mask_type = macro_clamp(mask_type_static, 0.0, 2.0);
|
||||
static const float mask_sample_mode_desired = macro_clamp(mask_sample_mode_static, 0.0, 2.0);
|
||||
static const float mask_specify_num_triads = macro_clamp(mask_specify_num_triads_static, 0.0, 1.0);
|
||||
static const float mask_triad_size_desired = macro_clamp(mask_triad_size_desired_static, 1.0, 18.0);
|
||||
static const float mask_num_triads_desired = macro_clamp(mask_num_triads_desired_static, 342.0, 1920.0);
|
||||
static const float aa_subpixel_r_offset_x_runtime = macro_clamp(aa_subpixel_r_offset_static.x, -0.5, 0.5);
|
||||
static const float aa_subpixel_r_offset_y_runtime = macro_clamp(aa_subpixel_r_offset_static.y, -0.5, 0.5);
|
||||
static const float aa_cubic_c = aa_cubic_c_static; // Clamp to [0, 4]?
|
||||
static const float aa_gauss_sigma = macro_max(FIX_ZERO(0.0), aa_gauss_sigma_static); // Clamp to [FIXZERO(0), 1]?
|
||||
static const float geom_mode_runtime = macro_clamp(geom_mode_static, 0.0, 3.0);
|
||||
static const float geom_radius = macro_max(1.0/(2.0*pi), geom_radius_static); // Clamp to [1/(2*pi), 1024]?
|
||||
static const float geom_view_dist = macro_max(0.5, geom_view_dist_static); // Clamp to [0.5, 1024]?
|
||||
static const float geom_tilt_angle_x = macro_clamp(geom_tilt_angle_static.x, -pi, pi);
|
||||
static const float geom_tilt_angle_y = macro_clamp(geom_tilt_angle_static.y, -pi, pi);
|
||||
static const float geom_aspect_ratio_x = geom_aspect_ratio_static; // Force >= 1?
|
||||
static const float geom_aspect_ratio_y = 1.0;
|
||||
static const float geom_overscan_x = macro_max(FIX_ZERO(0.0), geom_overscan_static.x);
|
||||
static const float geom_overscan_y = macro_max(FIX_ZERO(0.0), geom_overscan_static.y);
|
||||
static const float border_size = macro_clamp(border_size_static, 0.0, 0.5); // 0.5 reaches to image center
|
||||
static const float border_darkness = macro_max(0.0, border_darkness_static);
|
||||
static const float border_compress = macro_max(1.0, border_compress_static); // < 1.0 darkens whole image
|
||||
static const float interlace_bff = float(interlace_bff_static);
|
||||
static const float interlace_1080i = float(interlace_1080i_static);
|
||||
*/
|
||||
#endif
|
||||
|
||||
/*
|
||||
// Provide accessors for vector constants that pack scalar uniforms:
|
||||
float2 get_aspect_vector(const float geom_aspect_ratio)
|
||||
{
|
||||
// Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent
|
||||
// the absolute scale from affecting the uv-mapping for curvature:
|
||||
const float geom_clamped_aspect_ratio =
|
||||
min(geom_aspect_ratio, geom_max_aspect_ratio);
|
||||
const float2 geom_aspect =
|
||||
normalize(float2(geom_clamped_aspect_ratio, 1.0));
|
||||
return geom_aspect;
|
||||
}
|
||||
|
||||
float2 get_geom_overscan_vector()
|
||||
{
|
||||
return float2(geom_overscan_x, geom_overscan_y);
|
||||
}
|
||||
|
||||
float2 get_geom_tilt_angle_vector()
|
||||
{
|
||||
return float2(geom_tilt_angle_x, geom_tilt_angle_y);
|
||||
}
|
||||
*/
|
||||
float3 get_convergence_offsets_x_vector()
|
||||
{
|
||||
return float3(convergence_offset_x_r, convergence_offset_x_g,
|
||||
convergence_offset_x_b);
|
||||
}
|
||||
|
||||
float3 get_convergence_offsets_y_vector()
|
||||
{
|
||||
return float3(convergence_offset_y_r, convergence_offset_y_g,
|
||||
convergence_offset_y_b);
|
||||
}
|
||||
|
||||
float2 get_convergence_offsets_r_vector()
|
||||
{
|
||||
return float2(convergence_offset_x_r, convergence_offset_y_r);
|
||||
}
|
||||
|
||||
float2 get_convergence_offsets_g_vector()
|
||||
{
|
||||
return float2(convergence_offset_x_g, convergence_offset_y_g);
|
||||
}
|
||||
|
||||
float2 get_convergence_offsets_b_vector()
|
||||
{
|
||||
return float2(convergence_offset_x_b, convergence_offset_y_b);
|
||||
}
|
||||
/*
|
||||
float2 get_aa_subpixel_r_offset()
|
||||
{
|
||||
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
||||
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// WARNING: THIS IS EXTREMELY EXPENSIVE.
|
||||
return float2(aa_subpixel_r_offset_x_runtime,
|
||||
aa_subpixel_r_offset_y_runtime);
|
||||
#else
|
||||
return aa_subpixel_r_offset_static;
|
||||
#endif
|
||||
#else
|
||||
return aa_subpixel_r_offset_static;
|
||||
#endif
|
||||
}
|
||||
*/
|
||||
// Provide accessors settings which still need "cooking:"
|
||||
float get_mask_amplify()
|
||||
{
|
||||
static const float mask_grille_amplify = 1.0/mask_grille_avg_color;
|
||||
static const float mask_slot_amplify = 1.0/mask_slot_avg_color;
|
||||
static const float mask_shadow_amplify = 1.0/mask_shadow_avg_color;
|
||||
return mask_type < 0.5 ? mask_grille_amplify :
|
||||
mask_type < 1.5 ? mask_slot_amplify :
|
||||
mask_shadow_amplify;
|
||||
}
|
||||
|
||||
float get_mask_sample_mode()
|
||||
{
|
||||
#ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
return mask_sample_mode_desired;
|
||||
#else
|
||||
return clamp(mask_sample_mode_desired, 1.0, 2.0);
|
||||
#endif
|
||||
#else
|
||||
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
return mask_sample_mode_static;
|
||||
#else
|
||||
return clamp(mask_sample_mode_static, 1.0, 2.0);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#endif // BIND_SHADER_PARAMS_H
|
||||
|
||||
|
|
@ -0,0 +1,317 @@
|
|||
#ifndef BLOOM_FUNCTIONS_H
|
||||
#define BLOOM_FUNCTIONS_H
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||||
|
||||
// These utility functions and constants help several passes determine the
|
||||
// size and center texel weight of the phosphor bloom in a uniform manner.
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
// We need to calculate the correct blur sigma using some .cgp constants:
|
||||
#include "user-settings.fxh"
|
||||
#include "derived-settings-and-constants.fxh"
|
||||
#include "blur-functions.fxh"
|
||||
|
||||
|
||||
/////////////////////////////// BLOOM CONSTANTS //////////////////////////////
|
||||
|
||||
// Compute constants with manual inlines of the functions below:
|
||||
static const float bloom_diff_thresh = 1.0/256.0;
|
||||
|
||||
|
||||
|
||||
/////////////////////////////////// HELPERS //////////////////////////////////
|
||||
|
||||
float get_min_sigma_to_blur_triad(const float triad_size,
|
||||
const float thresh)
|
||||
{
|
||||
// Requires: 1.) triad_size is the final phosphor triad size in pixels
|
||||
// 2.) thresh is the max desired pixel difference in the
|
||||
// blurred triad (e.g. 1.0/256.0).
|
||||
// Returns: Return the minimum sigma that will fully blur a phosphor
|
||||
// triad on the screen to an even color, within thresh.
|
||||
// This closed-form function was found by curve-fitting data.
|
||||
// Estimate: max error = ~0.086036, mean sq. error = ~0.0013387:
|
||||
return -0.05168 + 0.6113*triad_size -
|
||||
1.122*triad_size*sqrt(0.000416 + thresh);
|
||||
// Estimate: max error = ~0.16486, mean sq. error = ~0.0041041:
|
||||
//return 0.5985*triad_size - triad_size*sqrt(thresh)
|
||||
}
|
||||
|
||||
float get_absolute_scale_blur_sigma(const float thresh)
|
||||
{
|
||||
// Requires: 1.) min_expected_triads must be a global float. The number
|
||||
// of horizontal phosphor triads in the final image must be
|
||||
// >= min_allowed_viewport_triads.x for realistic results.
|
||||
// 2.) bloom_approx_scale_x must be a global float equal to the
|
||||
// absolute horizontal scale of BLOOM_APPROX.
|
||||
// 3.) bloom_approx_scale_x/min_allowed_viewport_triads.x
|
||||
// should be <= 1.1658025090 to keep the final result <
|
||||
// 0.62666015625 (the largest sigma ensuring the largest
|
||||
// unused texel weight stays < 1.0/256.0 for a 3x3 blur).
|
||||
// 4.) thresh is the max desired pixel difference in the
|
||||
// blurred triad (e.g. 1.0/256.0).
|
||||
// Returns: Return the minimum Gaussian sigma that will blur the pass
|
||||
// output as much as it would have taken to blur away
|
||||
// bloom_approx_scale_x horizontal phosphor triads.
|
||||
// Description:
|
||||
// BLOOM_APPROX should look like a downscaled phosphor blur. Ideally, we'd
|
||||
// use the same blur sigma as the actual phosphor bloom and scale it down
|
||||
// to the current resolution with (bloom_approx_scale_x/viewport_size_x), but
|
||||
// we don't know the viewport size in this pass. Instead, we'll blur as
|
||||
// much as it would take to blur away min_allowed_viewport_triads.x. This
|
||||
// will blur "more than necessary" if the user actually uses more triads,
|
||||
// but that's not terrible either, because blurring a constant fraction of
|
||||
// the viewport may better resemble a true optical bloom anyway (since the
|
||||
// viewport will generally be about the same fraction of each player's
|
||||
// field of view, regardless of screen size and resolution).
|
||||
// Assume an extremely large viewport size for asymptotic results.
|
||||
return bloom_approx_scale_x/max_viewport_size_x *
|
||||
get_min_sigma_to_blur_triad(
|
||||
max_viewport_size_x/min_allowed_viewport_triads.x, thresh);
|
||||
}
|
||||
|
||||
float get_center_weight(const float sigma)
|
||||
{
|
||||
// Given a Gaussian blur sigma, get the blur weight for the center texel.
|
||||
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
return get_fast_gaussian_weight_sum_inv(sigma);
|
||||
#else
|
||||
const float denom_inv = 0.5/(sigma*sigma);
|
||||
const float w0 = 1.0;
|
||||
const float w1 = exp(-1.0 * denom_inv);
|
||||
const float w2 = exp(-4.0 * denom_inv);
|
||||
const float w3 = exp(-9.0 * denom_inv);
|
||||
const float w4 = exp(-16.0 * denom_inv);
|
||||
const float w5 = exp(-25.0 * denom_inv);
|
||||
const float w6 = exp(-36.0 * denom_inv);
|
||||
const float w7 = exp(-49.0 * denom_inv);
|
||||
const float w8 = exp(-64.0 * denom_inv);
|
||||
const float w9 = exp(-81.0 * denom_inv);
|
||||
const float w10 = exp(-100.0 * denom_inv);
|
||||
const float w11 = exp(-121.0 * denom_inv);
|
||||
const float w12 = exp(-144.0 * denom_inv);
|
||||
const float w13 = exp(-169.0 * denom_inv);
|
||||
const float w14 = exp(-196.0 * denom_inv);
|
||||
const float w15 = exp(-225.0 * denom_inv);
|
||||
const float w16 = exp(-256.0 * denom_inv);
|
||||
const float w17 = exp(-289.0 * denom_inv);
|
||||
const float w18 = exp(-324.0 * denom_inv);
|
||||
const float w19 = exp(-361.0 * denom_inv);
|
||||
const float w20 = exp(-400.0 * denom_inv);
|
||||
const float w21 = exp(-441.0 * denom_inv);
|
||||
// Note: If the implementation uses a smaller blur than the max allowed,
|
||||
// the worst case scenario is that the center weight will be overestimated,
|
||||
// so we'll put a bit more energy into the brightpass...no huge deal.
|
||||
// Then again, if the implementation uses a larger blur than the max
|
||||
// "allowed" because of dynamic branching, the center weight could be
|
||||
// underestimated, which is more of a problem...consider always using
|
||||
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// 43x blur:
|
||||
const float weight_sum_inv = 1.0 /
|
||||
(w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 +
|
||||
w11 + w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21));
|
||||
#else
|
||||
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
// 31x blur:
|
||||
const float weight_sum_inv = 1.0 /
|
||||
(w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 +
|
||||
w8 + w9 + w10 + w11 + w12 + w13 + w14 + w15));
|
||||
#else
|
||||
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
// 25x blur:
|
||||
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
|
||||
w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12));
|
||||
#else
|
||||
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
// 17x blur:
|
||||
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
|
||||
w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8));
|
||||
#else
|
||||
// 9x blur:
|
||||
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
|
||||
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
const float center_weight = weight_sum_inv * weight_sum_inv;
|
||||
return center_weight;
|
||||
#endif
|
||||
}
|
||||
|
||||
float3 tex2DblurNfast(const sampler2D tex, const float2 tex_uv,
|
||||
const float2 dxdy, const float sigma)
|
||||
{
|
||||
// If sigma is static, we can safely branch and use the smallest blur
|
||||
// that's big enough. Ignore #define hints, because we'll only use a
|
||||
// large blur if we actually need it, and the branches cost nothing.
|
||||
#ifndef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
#define PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
|
||||
#else
|
||||
// It's still worth branching if the profile supports dynamic branches:
|
||||
// It's much faster than using a hugely excessive blur, but each branch
|
||||
// eats ~1% FPS.
|
||||
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
#define PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
|
||||
#endif
|
||||
#endif
|
||||
// Failed optimization notes:
|
||||
// I originally created a same-size mipmapped 5-tap separable blur10 that
|
||||
// could handle any sigma by reaching into lower mip levels. It was
|
||||
// as fast as blur25fast for runtime sigmas and a tad faster than
|
||||
// blur31fast for static sigmas, but mipmapping two viewport-size passes
|
||||
// ate 10% of FPS across all codepaths, so it wasn't worth it.
|
||||
#ifdef PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
|
||||
if(sigma <= blur9_std_dev)
|
||||
{
|
||||
return tex2Dblur9fast(tex, tex_uv, dxdy, sigma);
|
||||
}
|
||||
else if(sigma <= blur17_std_dev)
|
||||
{
|
||||
return tex2Dblur17fast(tex, tex_uv, dxdy, sigma);
|
||||
}
|
||||
else if(sigma <= blur25_std_dev)
|
||||
{
|
||||
return tex2Dblur25fast(tex, tex_uv, dxdy, sigma);
|
||||
}
|
||||
else if(sigma <= blur31_std_dev)
|
||||
{
|
||||
return tex2Dblur31fast(tex, tex_uv, dxdy, sigma);
|
||||
}
|
||||
else
|
||||
{
|
||||
return tex2Dblur43fast(tex, tex_uv, dxdy, sigma);
|
||||
}
|
||||
#else
|
||||
// If we can't afford to branch, we can only guess at what blur
|
||||
// size we need. Therefore, use the largest blur allowed.
|
||||
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
return tex2Dblur43fast(tex, tex_uv, dxdy, sigma);
|
||||
#else
|
||||
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
return tex2Dblur31fast(tex, tex_uv, dxdy, sigma);
|
||||
#else
|
||||
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
return tex2Dblur25fast(tex, tex_uv, dxdy, sigma);
|
||||
#else
|
||||
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
return tex2Dblur17fast(tex, tex_uv, dxdy, sigma);
|
||||
#else
|
||||
return tex2Dblur9fast(tex, tex_uv, dxdy, sigma);
|
||||
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
#endif // PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
|
||||
}
|
||||
|
||||
float get_bloom_approx_sigma(const float output_size_x_runtime,
|
||||
const float estimated_viewport_size_x)
|
||||
{
|
||||
// Requires: 1.) output_size_x_runtime == BLOOM_APPROX.output_size.x.
|
||||
// This is included for dynamic codepaths just in case the
|
||||
// following two globals are incorrect:
|
||||
// 2.) bloom_approx_size_x_for_skip should == the same
|
||||
// if PHOSPHOR_BLOOM_FAKE is #defined
|
||||
// 3.) bloom_approx_size_x should == the same otherwise
|
||||
// Returns: For gaussian4x4, return a dynamic small bloom sigma that's
|
||||
// as close to optimal as possible given available information.
|
||||
// For blur3x3, return the a static small bloom sigma that
|
||||
// works well for typical cases. Otherwise, we're using simple
|
||||
// bilinear filtering, so use static calculations.
|
||||
// Assume the default static value. This is a compromise that ensures
|
||||
// typical triads are blurred, even if unusually large ones aren't.
|
||||
static const float mask_num_triads_static =
|
||||
max(min_allowed_viewport_triads.x, mask_num_triads_desired_static);
|
||||
const float mask_num_triads_from_size =
|
||||
estimated_viewport_size_x/mask_triad_size_desired;
|
||||
const float mask_num_triads_runtime = max(min_allowed_viewport_triads.x,
|
||||
lerp(mask_num_triads_from_size, mask_num_triads_desired,
|
||||
mask_specify_num_triads));
|
||||
// Assume an extremely large viewport size for asymptotic results:
|
||||
static const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0);
|
||||
if(bloom_approx_filter > 1.5) // 4x4 true Gaussian resize
|
||||
{
|
||||
// Use the runtime num triads and output size:
|
||||
const float asymptotic_triad_size =
|
||||
max_viewport_size_x/mask_num_triads_runtime;
|
||||
const float asymptotic_sigma = get_min_sigma_to_blur_triad(
|
||||
asymptotic_triad_size, bloom_diff_thresh);
|
||||
const float bloom_approx_sigma =
|
||||
asymptotic_sigma * output_size_x_runtime/max_viewport_size_x;
|
||||
// The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but
|
||||
// account for the Gaussian scanline sigma from the last pass too.
|
||||
// The bloom will be too wide horizontally but tall enough vertically.
|
||||
return length(float2(bloom_approx_sigma, beam_max_sigma));
|
||||
}
|
||||
else // 3x3 blur resize (the bilinear resize doesn't need a sigma)
|
||||
{
|
||||
// We're either using blur3x3 or bilinear filtering. The biggest
|
||||
// reason to choose blur3x3 is to avoid dynamic weights, so use a
|
||||
// static calculation.
|
||||
#ifdef PHOSPHOR_BLOOM_FAKE
|
||||
static const float output_size_x_static =
|
||||
bloom_approx_size_x_for_fake;
|
||||
#else
|
||||
static const float output_size_x_static = bloom_approx_size_x;
|
||||
#endif
|
||||
static const float asymptotic_triad_size =
|
||||
max_viewport_size_x/mask_num_triads_static;
|
||||
const float asymptotic_sigma = get_min_sigma_to_blur_triad(
|
||||
asymptotic_triad_size, bloom_diff_thresh);
|
||||
const float bloom_approx_sigma =
|
||||
asymptotic_sigma * output_size_x_static/max_viewport_size_x;
|
||||
// The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but
|
||||
// try accounting for the Gaussian scanline sigma from the last pass
|
||||
// too; use the static default value:
|
||||
return length(float2(bloom_approx_sigma, beam_max_sigma_static));
|
||||
}
|
||||
}
|
||||
|
||||
float get_final_bloom_sigma(const float bloom_sigma_runtime)
|
||||
{
|
||||
// Requires: 1.) bloom_sigma_runtime is a precalculated sigma that's
|
||||
// optimal for the [known] triad size.
|
||||
// 2.) Call this from a fragment shader (not a vertex shader),
|
||||
// or blurring with static sigmas won't be constant-folded.
|
||||
// Returns: Return the optimistic static sigma if the triad size is
|
||||
// known at compile time. Otherwise return the optimal runtime
|
||||
// sigma (10% slower) or an implementation-specific compromise
|
||||
// between an optimistic or pessimistic static sigma.
|
||||
// Notes: Call this from the fragment shader, NOT the vertex shader,
|
||||
// so static sigmas can be constant-folded!
|
||||
const float bloom_sigma_optimistic = get_min_sigma_to_blur_triad(
|
||||
mask_triad_size_desired_static, bloom_diff_thresh);
|
||||
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
return bloom_sigma_runtime;
|
||||
#else
|
||||
// Overblurring looks as bad as underblurring, so assume average-size
|
||||
// triads, not worst-case huge triads:
|
||||
return bloom_sigma_optimistic;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#endif // BLOOM_FUNCTIONS_H
|
||||
|
|
@ -0,0 +1,299 @@
|
|||
#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
|
||||
#define DERIVED_SETTINGS_AND_CONSTANTS_H
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||||
|
||||
// These macros and constants can be used across the whole codebase.
|
||||
// Unlike the values in user-settings.cgh, end users shouldn't modify these.
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "user-settings.fxh"
|
||||
#include "user-cgp-constants.fxh"
|
||||
|
||||
|
||||
/////////////////////////////// FIXED SETTINGS ///////////////////////////////
|
||||
|
||||
// Avoid dividing by zero; using a macro overloads for float, float2, etc.:
|
||||
//#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
|
||||
|
||||
// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
|
||||
#ifndef SIMULATE_CRT_ON_LCD
|
||||
#define SIMULATE_CRT_ON_LCD
|
||||
#endif
|
||||
|
||||
// Manually tiling a manually resized texture creates texture coord derivative
|
||||
// discontinuities and confuses anisotropic filtering, causing discolored tile
|
||||
// seams in the phosphor mask. Workarounds:
|
||||
// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
|
||||
// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
|
||||
// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
|
||||
// b.) "Tile flat twice" requires drawing two full tiles without border padding
|
||||
// to the resized mask FBO, and it's incompatible with same-pass curvature.
|
||||
// (Same-pass curvature isn't used but could be in the future...maybe.)
|
||||
// c.) "Fix discontinuities" requires derivatives and drawing one tile with
|
||||
// border padding to the resized mask FBO, but it works with same-pass
|
||||
// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
|
||||
// Precedence: a, then, b, then c (if multiple strategies are #defined).
|
||||
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
|
||||
#define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
|
||||
#define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
|
||||
// Also, manually resampling the phosphor mask is slightly blurrier with
|
||||
// anisotropic filtering. (Resampling with mipmapping is even worse: It
|
||||
// creates artifacts, but only with the fully bloomed shader.) The difference
|
||||
// is subtle with small triads, but you can fix it for a small cost.
|
||||
//#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
|
||||
|
||||
////////////////////////////// DERIVED SETTINGS //////////////////////////////
|
||||
|
||||
// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
|
||||
// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
|
||||
// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
|
||||
// #defined by either user-settings.h or a wrapper .cg that #includes the
|
||||
// current .cg pass.)
|
||||
#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
#undef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
#endif
|
||||
#ifdef RUNTIME_GEOMETRY_MODE
|
||||
#undef RUNTIME_GEOMETRY_MODE
|
||||
#endif
|
||||
// Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
|
||||
// inferior in most cases, so replace 2.0 with 0.0:
|
||||
static const float bloom_approx_filter =
|
||||
bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
|
||||
#else
|
||||
static const float bloom_approx_filter = bloom_approx_filter_static;
|
||||
#endif
|
||||
|
||||
// Disable slow runtime paths if static parameters are used. Most of these
|
||||
// won't be a problem anyway once the params are disabled, but some will.
|
||||
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
|
||||
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
#undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
#endif
|
||||
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
||||
#undef RUNTIME_ANTIALIAS_WEIGHTS
|
||||
#endif
|
||||
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
#undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
#endif
|
||||
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
#undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
#endif
|
||||
#ifdef RUNTIME_GEOMETRY_TILT
|
||||
#undef RUNTIME_GEOMETRY_TILT
|
||||
#endif
|
||||
#ifdef RUNTIME_GEOMETRY_MODE
|
||||
#undef RUNTIME_GEOMETRY_MODE
|
||||
#endif
|
||||
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Make tex2Dbias a backup for tex2Dlod for wider compatibility.
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
#define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
#endif
|
||||
// Rule out unavailable anisotropic compatibility strategies:
|
||||
#ifndef DRIVERS_ALLOW_DERIVATIVES
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#endif
|
||||
#endif
|
||||
#ifndef DRIVERS_ALLOW_TEX2DLOD
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
#undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
#endif
|
||||
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
|
||||
#undef ANTIALIAS_DISABLE_ANISOTROPIC
|
||||
#endif
|
||||
#endif
|
||||
#ifndef DRIVERS_ALLOW_TEX2DBIAS
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
#endif
|
||||
#endif
|
||||
// Prioritize anisotropic tiling compatibility strategies by performance and
|
||||
// disable unused strategies. This concentrates all the nesting in one place.
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#endif
|
||||
#else
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#endif
|
||||
#else
|
||||
// ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
|
||||
// flat texture coords in the same pass, but that's all we use.
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
|
||||
// reduce some #ifdef nesting in the next section by essentially OR'ing them:
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
||||
#endif
|
||||
// Prioritize anisotropic resampling compatibility strategies the same way:
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
|
||||
|
||||
// If we can use the large mipmapped LUT without mipmapping artifacts, we
|
||||
// should: It gives us more options for using fewer samples.
|
||||
#ifdef DRIVERS_ALLOW_TEX2DLOD
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
// TODO: Take advantage of this!
|
||||
#define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
|
||||
static const float2 mask_resize_src_lut_size = mask_texture_large_size;
|
||||
#else
|
||||
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
|
||||
#endif
|
||||
#else
|
||||
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
|
||||
#endif
|
||||
|
||||
|
||||
// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
|
||||
// main_fragment, or a static alias of one of the above. This makes it hard
|
||||
// to select the phosphor mask at runtime: We can't even assign to a uniform
|
||||
// global in the vertex shader or select a sampler2D in the vertex shader and
|
||||
// pass it to the fragment shader (even with explicit TEXUNIT# bindings),
|
||||
// because it just gives us the input texture or a black screen. However, we
|
||||
// can get around these limitations by calling tex2D three times with different
|
||||
// uniform samplers (or resizing the phosphor mask three times altogether).
|
||||
// With dynamic branches, we can process only one of these branches on top of
|
||||
// quickly discarding fragments we don't need (cgc seems able to overcome
|
||||
// limigations around dependent texture fetches inside of branches). Without
|
||||
// dynamic branches, we have to process every branch for every fragment...which
|
||||
// is slower. Runtime sampling mode selection is slower without dynamic
|
||||
// branches as well. Let the user's static #defines decide if it's worth it.
|
||||
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#else
|
||||
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// We need to render some minimum number of tiles in the resize passes.
|
||||
// We need at least 1.0 just to repeat a single tile, and we need extra
|
||||
// padding beyond that for anisotropic filtering, discontinuitity fixing,
|
||||
// antialiasing, same-pass curvature (not currently used), etc. First
|
||||
// determine how many border texels and tiles we need, based on how the result
|
||||
// will be sampled:
|
||||
#ifdef GEOMETRY_EARLY
|
||||
static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
|
||||
// Most antialiasing filters have a base radius of 4.0 pixels:
|
||||
static const float max_aa_base_pixel_border = 4.0 +
|
||||
max_subpixel_offset;
|
||||
#else
|
||||
static const float max_aa_base_pixel_border = 0.0;
|
||||
#endif
|
||||
// Anisotropic filtering adds about 0.5 to the pixel border:
|
||||
#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
||||
static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
|
||||
#else
|
||||
static const float max_aniso_pixel_border = max_aa_base_pixel_border;
|
||||
#endif
|
||||
// Fixing discontinuities adds 1.0 more to the pixel border:
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
|
||||
#else
|
||||
static const float max_tiled_pixel_border = max_aniso_pixel_border;
|
||||
#endif
|
||||
// Convert the pixel border to an integer texel border. Assume same-pass
|
||||
// curvature about triples the texel frequency:
|
||||
#ifdef GEOMETRY_EARLY
|
||||
static const float max_mask_texel_border =
|
||||
macro_ceil(max_tiled_pixel_border * 3.0);
|
||||
#else
|
||||
static const float max_mask_texel_border = macro_ceil(max_tiled_pixel_border);
|
||||
#endif
|
||||
// Convert the texel border to a tile border using worst-case assumptions:
|
||||
static const float max_mask_tile_border = max_mask_texel_border/
|
||||
(mask_min_allowed_triad_size * mask_triads_per_tile);
|
||||
|
||||
// Finally, set the number of resized tiles to render to MASK_RESIZE, and set
|
||||
// the starting texel (inside borders) for sampling it.
|
||||
#ifndef GEOMETRY_EARLY
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
// Special case: Render two tiles without borders. Anisotropic
|
||||
// filtering doesn't seem to be a problem here.
|
||||
static const float mask_resize_num_tiles = 1.0 + 1.0;
|
||||
static const float mask_start_texels = 0.0;
|
||||
#else
|
||||
static const float mask_resize_num_tiles = 1.0 +
|
||||
2.0 * max_mask_tile_border;
|
||||
static const float mask_start_texels = max_mask_texel_border;
|
||||
#endif
|
||||
#else
|
||||
static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
|
||||
static const float mask_start_texels = max_mask_texel_border;
|
||||
#endif
|
||||
|
||||
// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
|
||||
// mask_resize_viewport_scale. This limits the maximum final triad size.
|
||||
// Estimate the minimum number of triads we can split the screen into in each
|
||||
// dimension (we'll be as correct as mask_resize_viewport_scale is):
|
||||
static const float mask_resize_num_triads =
|
||||
mask_resize_num_tiles * mask_triads_per_tile;
|
||||
static const float2 min_allowed_viewport_triads =
|
||||
mask_resize_num_triads.xx / mask_resize_viewport_scale;
|
||||
|
||||
#endif // DERIVED_SETTINGS_AND_CONSTANTS_H
|
||||
|
|
@ -0,0 +1,545 @@
|
|||
#ifndef GAMMA_MANAGEMENT_H
|
||||
#define GAMMA_MANAGEMENT_H
|
||||
|
||||
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||||
|
||||
// Copyright (C) 2014 TroggleMonkey
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to
|
||||
// deal in the Software without restriction, including without limitation the
|
||||
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
// sell copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
// IN THE SOFTWARE.
|
||||
|
||||
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||||
|
||||
// This file provides gamma-aware tex*D*() and encode_output() functions.
|
||||
// Requires: Before #include-ing this file, the including file must #define
|
||||
// the following macros when applicable and follow their rules:
|
||||
// 1.) #define FIRST_PASS if this is the first pass.
|
||||
// 2.) #define LAST_PASS if this is the last pass.
|
||||
// 3.) If sRGB is available, set srgb_framebufferN = "true" for
|
||||
// every pass except the last in your .cgp preset.
|
||||
// 4.) If sRGB isn't available but you want gamma-correctness with
|
||||
// no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
|
||||
// 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
|
||||
// 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
|
||||
// 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
|
||||
// 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
|
||||
// If an option in [5, 8] is #defined in the first or last pass, it
|
||||
// should be #defined for both. It shouldn't make a difference
|
||||
// whether it's #defined for intermediate passes or not.
|
||||
// Optional: The including file (or an earlier included file) may optionally
|
||||
// #define a number of macros indicating it will override certain
|
||||
// macros and associated constants are as follows:
|
||||
// static constants with either static or uniform constants. The
|
||||
// 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
|
||||
// static const float ntsc_gamma
|
||||
// static const float pal_gamma
|
||||
// static const float crt_reference_gamma_high
|
||||
// static const float crt_reference_gamma_low
|
||||
// static const float lcd_reference_gamma
|
||||
// static const float crt_office_gamma
|
||||
// static const float lcd_office_gamma
|
||||
// 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
|
||||
// static const float crt_gamma
|
||||
// static const float gba_gamma
|
||||
// static const float lcd_gamma
|
||||
// 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
|
||||
// static const float input_gamma
|
||||
// static const float intermediate_gamma
|
||||
// static const float output_gamma
|
||||
// (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
|
||||
// 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
|
||||
// static const bool assume_opaque_alpha
|
||||
// The gamma constant overrides must be used in every pass or none,
|
||||
// and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
|
||||
// OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
|
||||
// Usage: After setting macros appropriately, ignore gamma correction and
|
||||
// replace all tex*D*() calls with equivalent gamma-aware
|
||||
// tex*D*_linearize calls, except:
|
||||
// 1.) When you read an LUT, use regular tex*D or a gamma-specified
|
||||
// function, depending on its gamma encoding:
|
||||
// tex*D*_linearize_gamma (takes a runtime gamma parameter)
|
||||
// 2.) If you must read pass0's original input in a later pass, use
|
||||
// tex2D_linearize_ntsc_gamma. If you want to read pass0's
|
||||
// input with gamma-corrected bilinear filtering, consider
|
||||
// creating a first linearizing pass and reading from the input
|
||||
// of pass1 later.
|
||||
// Then, return encode_output(color) from every fragment shader.
|
||||
// Finally, use the global gamma_aware_bilinear boolean if you want
|
||||
// to statically branch based on whether bilinear filtering is
|
||||
// gamma-correct or not (e.g. for placing Gaussian blur samples).
|
||||
//
|
||||
// Detailed Policy:
|
||||
// tex*D*_linearize() functions enforce a consistent gamma-management policy
|
||||
// based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
|
||||
// their input texture has the same encoding characteristics as the input for
|
||||
// the current pass (which doesn't apply to the exceptions listed above).
|
||||
// Similarly, encode_output() enforces a policy based on the LAST_PASS and
|
||||
// GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
|
||||
// following two pipelines.
|
||||
// Typical pipeline with intermediate sRGB framebuffers:
|
||||
// linear_color = pow(pass0_encoded_color, input_gamma);
|
||||
// intermediate_output = linear_color; // Automatic sRGB encoding
|
||||
// linear_color = intermediate_output; // Automatic sRGB decoding
|
||||
// final_output = pow(intermediate_output, 1.0/output_gamma);
|
||||
// Typical pipeline without intermediate sRGB framebuffers:
|
||||
// linear_color = pow(pass0_encoded_color, input_gamma);
|
||||
// intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
|
||||
// linear_color = pow(intermediate_output, intermediate_gamma);
|
||||
// final_output = pow(intermediate_output, 1.0/output_gamma);
|
||||
// Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
|
||||
// easily get gamma-correctness without banding on devices where sRGB isn't
|
||||
// supported.
|
||||
//
|
||||
// Use This Header to Maximize Code Reuse:
|
||||
// The purpose of this header is to provide a consistent interface for texture
|
||||
// reads and output gamma-encoding that localizes and abstracts away all the
|
||||
// annoying details. This greatly reduces the amount of code in each shader
|
||||
// pass that depends on the pass number in the .cgp preset or whether sRGB
|
||||
// FBO's are being used: You can trivially change the gamma behavior of your
|
||||
// whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
|
||||
// code in your first, Nth, and last passes, you can even put it all in another
|
||||
// header file and #include it from skeleton .cg files that #define the
|
||||
// appropriate pass-specific settings.
|
||||
//
|
||||
// Rationale for Using Three Macros:
|
||||
// This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
|
||||
// SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
|
||||
// a lower maintenance burden on each pass. At first glance it seems we could
|
||||
// accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
|
||||
// This works for simple use cases where input_gamma == output_gamma, but it
|
||||
// breaks down for more complex scenarios like CRT simulation, where the pass
|
||||
// number determines the gamma encoding of the input and output.
|
||||
|
||||
|
||||
/////////////////////////////// BASE CONSTANTS ///////////////////////////////
|
||||
|
||||
// Set standard gamma constants, but allow users to override them:
|
||||
#ifndef OVERRIDE_STANDARD_GAMMA
|
||||
// Standard encoding gammas:
|
||||
static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
|
||||
static const float pal_gamma = 2.8; // Never actually 2.8 in practice
|
||||
// Typical device decoding gammas (only use for emulating devices):
|
||||
// CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
|
||||
// gammas: The standards purposely undercorrected for an analog CRT's
|
||||
// assumed 2.5 reference display gamma to maintain contrast in assumed
|
||||
// [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
|
||||
// These unstated assumptions about display gamma and perceptual rendering
|
||||
// intent caused a lot of confusion, and more modern CRT's seemed to target
|
||||
// NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
|
||||
// (they struggle near black with 2.5 gamma anyway), especially PC/laptop
|
||||
// displays designed to view sRGB in bright environments. (Standards are
|
||||
// also in flux again with BT.1886, but it's underspecified for displays.)
|
||||
static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
|
||||
static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
|
||||
static const float lcd_reference_gamma = 2.5; // To match CRT
|
||||
static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
|
||||
static const float lcd_office_gamma = 2.2; // Approximates sRGB
|
||||
#endif // OVERRIDE_STANDARD_GAMMA
|
||||
|
||||
// Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
|
||||
// but only if they're aware of it.
|
||||
#ifndef OVERRIDE_ALPHA_ASSUMPTIONS
|
||||
static const bool assume_opaque_alpha = false;
|
||||
#endif
|
||||
|
||||
|
||||
/////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
|
||||
|
||||
// gamma-management.h should be compatible with overriding gamma values with
|
||||
// runtime user parameters, but we can only define other global constants in
|
||||
// terms of static constants, not uniform user parameters. To get around this
|
||||
// limitation, we need to define derived constants using functions.
|
||||
|
||||
// Set device gamma constants, but allow users to override them:
|
||||
#ifdef OVERRIDE_DEVICE_GAMMA
|
||||
// The user promises to globally define the appropriate constants:
|
||||
float get_crt_gamma() { return crt_gamma; }
|
||||
float get_gba_gamma() { return gba_gamma; }
|
||||
float get_lcd_gamma() { return lcd_gamma; }
|
||||
#else
|
||||
float get_crt_gamma() { return crt_reference_gamma_high; }
|
||||
float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
|
||||
float get_lcd_gamma() { return lcd_office_gamma; }
|
||||
#endif // OVERRIDE_DEVICE_GAMMA
|
||||
|
||||
// Set decoding/encoding gammas for the first/lass passes, but allow overrides:
|
||||
#ifdef OVERRIDE_FINAL_GAMMA
|
||||
// The user promises to globally define the appropriate constants:
|
||||
float get_intermediate_gamma() { return intermediate_gamma; }
|
||||
float get_input_gamma() { return input_gamma; }
|
||||
float get_output_gamma() { return output_gamma; }
|
||||
#else
|
||||
// If we gamma-correct every pass, always use ntsc_gamma between passes to
|
||||
// ensure middle passes don't need to care if anything is being simulated:
|
||||
float get_intermediate_gamma() { return ntsc_gamma; }
|
||||
#ifdef SIMULATE_CRT_ON_LCD
|
||||
float get_input_gamma() { return get_crt_gamma(); }
|
||||
float get_output_gamma() { return get_lcd_gamma(); }
|
||||
#else
|
||||
#ifdef SIMULATE_GBA_ON_LCD
|
||||
float get_input_gamma() { return get_gba_gamma(); }
|
||||
float get_output_gamma() { return get_lcd_gamma(); }
|
||||
#else
|
||||
#ifdef SIMULATE_LCD_ON_CRT
|
||||
float get_input_gamma() { return get_lcd_gamma(); }
|
||||
float get_output_gamma() { return get_crt_gamma(); }
|
||||
#else
|
||||
#ifdef SIMULATE_GBA_ON_CRT
|
||||
float get_input_gamma() { return get_gba_gamma(); }
|
||||
float get_output_gamma() { return get_crt_gamma(); }
|
||||
#else // Don't simulate anything:
|
||||
float get_input_gamma() { return ntsc_gamma; }
|
||||
float get_output_gamma() { return ntsc_gamma; }
|
||||
#endif // SIMULATE_GBA_ON_CRT
|
||||
#endif // SIMULATE_LCD_ON_CRT
|
||||
#endif // SIMULATE_GBA_ON_LCD
|
||||
#endif // SIMULATE_CRT_ON_LCD
|
||||
#endif // OVERRIDE_FINAL_GAMMA
|
||||
|
||||
// Set decoding/encoding gammas for the current pass. Use static constants for
|
||||
// linearize_input and gamma_encode_output, because they aren't derived, and
|
||||
// they let the compiler do dead-code elimination.
|
||||
#ifndef GAMMA_ENCODE_EVERY_FBO
|
||||
#ifdef FIRST_PASS
|
||||
static const bool linearize_input = true;
|
||||
float get_pass_input_gamma() { return get_input_gamma(); }
|
||||
#else
|
||||
static const bool linearize_input = false;
|
||||
float get_pass_input_gamma() { return 1.0; }
|
||||
#endif
|
||||
#ifdef LAST_PASS
|
||||
static const bool gamma_encode_output = true;
|
||||
float get_pass_output_gamma() { return get_output_gamma(); }
|
||||
#else
|
||||
static const bool gamma_encode_output = false;
|
||||
float get_pass_output_gamma() { return 1.0; }
|
||||
#endif
|
||||
#else
|
||||
static const bool linearize_input = true;
|
||||
static const bool gamma_encode_output = true;
|
||||
#ifdef FIRST_PASS
|
||||
float get_pass_input_gamma() { return get_input_gamma(); }
|
||||
#else
|
||||
float get_pass_input_gamma() { return get_intermediate_gamma(); }
|
||||
#endif
|
||||
#ifdef LAST_PASS
|
||||
float get_pass_output_gamma() { return get_output_gamma(); }
|
||||
#else
|
||||
float get_pass_output_gamma() { return get_intermediate_gamma(); }
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Users might want to know if bilinear filtering will be gamma-correct:
|
||||
static const bool gamma_aware_bilinear = !linearize_input;
|
||||
|
||||
|
||||
////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
|
||||
|
||||
float4 encode_output(const float4 color)
|
||||
{
|
||||
if(gamma_encode_output)
|
||||
{
|
||||
if(assume_opaque_alpha)
|
||||
{
|
||||
return float4(pow(color.rgb, 1.0/get_pass_output_gamma()), 1.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
return float4(pow(color.rgb, 1.0/get_pass_output_gamma()), color.a);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
return color;
|
||||
}
|
||||
}
|
||||
|
||||
float4 decode_input(const float4 color)
|
||||
{
|
||||
return color;
|
||||
}
|
||||
|
||||
float4 decode_input_first(const float4 color)
|
||||
{
|
||||
if(assume_opaque_alpha)
|
||||
{
|
||||
return float4(pow(color.rgb, get_input_gamma()), 1.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
return float4(pow(color.rgb, get_input_gamma()), color.a);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float4 decode_gamma_input(const float4 color, const float3 gamma)
|
||||
{
|
||||
if(assume_opaque_alpha)
|
||||
{
|
||||
return float4(pow(color.rgb, gamma), 1.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
return float4(pow(color.rgb, gamma), color.a);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
|
||||
|
||||
// "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
|
||||
// Provide a wide array of linearizing texture lookup wrapper functions. The
|
||||
// Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
|
||||
// lookups are provided for completeness in case that changes someday. Nobody
|
||||
// is likely to use the *fetch and *proj functions, but they're included just
|
||||
// in case. The only tex*D texture sampling functions omitted are:
|
||||
// - tex*Dcmpbias
|
||||
// - tex*Dcmplod
|
||||
// - tex*DARRAY*
|
||||
// - tex*DMS*
|
||||
// - Variants returning integers
|
||||
// Standard line length restrictions are ignored below for vertical brevity.
|
||||
/*
|
||||
// tex1D:
|
||||
float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
|
||||
{ return decode_input(tex1D(tex, tex_coords)); }
|
||||
|
||||
float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
|
||||
{ return decode_input(tex1D(tex, tex_coords)); }
|
||||
|
||||
float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
|
||||
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
|
||||
|
||||
float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
|
||||
|
||||
float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
|
||||
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
|
||||
|
||||
float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
|
||||
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
|
||||
|
||||
float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
|
||||
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
|
||||
|
||||
float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
|
||||
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
|
||||
|
||||
// tex1Dbias:
|
||||
float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
|
||||
{ return decode_input(tex1Dbias(tex, tex_coords)); }
|
||||
|
||||
float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
|
||||
|
||||
// tex1Dfetch:
|
||||
float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
|
||||
{ return decode_input(tex1Dfetch(tex, tex_coords)); }
|
||||
|
||||
float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
|
||||
|
||||
// tex1Dlod:
|
||||
float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
|
||||
{ return decode_input(tex1Dlod(tex, tex_coords)); }
|
||||
|
||||
float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
|
||||
|
||||
// tex1Dproj:
|
||||
float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
|
||||
{ return decode_input(tex1Dproj(tex, tex_coords)); }
|
||||
|
||||
float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
|
||||
{ return decode_input(tex1Dproj(tex, tex_coords)); }
|
||||
|
||||
float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
|
||||
|
||||
float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
|
||||
*/
|
||||
// tex2D:
|
||||
float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords)
|
||||
{ return decode_input(tex2D(tex, tex_coords)); }
|
||||
|
||||
float4 tex2D_linearize_first(const sampler2D tex, const float2 tex_coords)
|
||||
{ return decode_input_first(tex2D(tex, tex_coords)); }
|
||||
|
||||
float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords)
|
||||
{ return decode_input(tex2D(tex, tex_coords.xy)); }
|
||||
|
||||
//float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
|
||||
//{ return decode_input(tex2D(tex, tex_coords, texel_off)); }
|
||||
|
||||
//float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
|
||||
//{ return decode_input(tex2D(tex, tex_coords.xy, texel_off)); }
|
||||
/*
|
||||
float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
|
||||
{ return decode_input(tex2D(tex, tex_coords, dx, dy)); }
|
||||
|
||||
float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
|
||||
{ return decode_input(tex2D(tex, tex_coords, dx, dy)); }
|
||||
|
||||
float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
|
||||
{ return decode_input(tex2D(tex, tex_coords, dx, dy, texel_off)); }
|
||||
|
||||
float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
|
||||
{ return decode_input(tex2D(tex, tex_coords, dx, dy, texel_off)); }
|
||||
|
||||
// tex2Dbias:
|
||||
float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
|
||||
{ return decode_input(tex2Dbias(tex, tex_coords)); }
|
||||
|
||||
float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
|
||||
|
||||
// tex2Dfetch:
|
||||
float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
|
||||
{ return decode_input(tex2Dfetch(tex, tex_coords)); }
|
||||
|
||||
float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
|
||||
*/
|
||||
// tex2Dlod:
|
||||
float4 tex2Dlod_linearize(const sampler2D tex, const float4 tex_coords)
|
||||
{ return decode_input(tex2Dlod(tex, tex_coords)); }
|
||||
|
||||
//float4 tex2Dlod_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
|
||||
//{ return decode_input(tex2Dlod(tex, tex_coords, texel_off)); }
|
||||
/*
|
||||
// tex2Dproj:
|
||||
float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
|
||||
{ return decode_input(tex2Dproj(tex, tex_coords)); }
|
||||
|
||||
float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
|
||||
{ return decode_input(tex2Dproj(tex, tex_coords)); }
|
||||
|
||||
float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
|
||||
|
||||
float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
|
||||
|
||||
// tex3D:
|
||||
float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
|
||||
{ return decode_input(tex3D(tex, tex_coords)); }
|
||||
|
||||
float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex3D(tex, tex_coords, texel_off)); }
|
||||
|
||||
float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
|
||||
{ return decode_input(tex3D(tex, tex_coords, dx, dy)); }
|
||||
|
||||
float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
|
||||
{ return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
|
||||
|
||||
// tex3Dbias:
|
||||
float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
|
||||
{ return decode_input(tex3Dbias(tex, tex_coords)); }
|
||||
|
||||
float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
|
||||
|
||||
// tex3Dfetch:
|
||||
float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
|
||||
{ return decode_input(tex3Dfetch(tex, tex_coords)); }
|
||||
|
||||
float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
|
||||
|
||||
// tex3Dlod:
|
||||
float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
|
||||
{ return decode_input(tex3Dlod(tex, tex_coords)); }
|
||||
|
||||
float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
|
||||
|
||||
// tex3Dproj:
|
||||
float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
|
||||
{ return decode_input(tex3Dproj(tex, tex_coords)); }
|
||||
|
||||
float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
|
||||
|
||||
|
||||
// NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
|
||||
// This narrow selection of nonstandard tex2D* functions can be useful:
|
||||
|
||||
// tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
|
||||
float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
|
||||
{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
|
||||
|
||||
float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
|
||||
{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
|
||||
|
||||
|
||||
// MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
|
||||
// Provide a narrower selection of tex2D* wrapper functions that decode an
|
||||
// input sample with a specified gamma value. These are useful for reading
|
||||
// LUT's and for reading the input of pass0 in a later pass.
|
||||
|
||||
// tex2D:
|
||||
float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
|
||||
{ return decode_gamma_input(tex2D(tex, tex_coords), gamma); }
|
||||
|
||||
float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
|
||||
{ return decode_gamma_input(tex2D(tex, tex_coords), gamma); }
|
||||
|
||||
float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
|
||||
{ return decode_gamma_input(tex2D(tex, tex_coords, texel_off), gamma); }
|
||||
|
||||
float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
|
||||
{ return decode_gamma_input(tex2D(tex, tex_coords, texel_off), gamma); }
|
||||
|
||||
float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
|
||||
{ return decode_gamma_input(tex2D(tex, tex_coords, dx, dy), gamma); }
|
||||
|
||||
float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
|
||||
{ return decode_gamma_input(tex2D(tex, tex_coords, dx, dy), gamma); }
|
||||
|
||||
float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
|
||||
{ return decode_gamma_input(tex2D(tex, tex_coords, dx, dy, texel_off), gamma); }
|
||||
|
||||
float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
|
||||
{ return decode_gamma_input(tex2D(tex, tex_coords, dx, dy, texel_off), gamma); }
|
||||
|
||||
// tex2Dbias:
|
||||
float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
|
||||
{ return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
|
||||
|
||||
float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
|
||||
{ return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
|
||||
|
||||
// tex2Dfetch:
|
||||
float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
|
||||
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
|
||||
|
||||
float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
|
||||
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
|
||||
*/
|
||||
// tex2Dlod:
|
||||
float4 tex2Dlod_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
|
||||
{ return decode_gamma_input(tex2Dlod(tex, tex_coords), gamma); }
|
||||
|
||||
//float4 tex2Dlod_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
|
||||
//{ return decode_gamma_input(tex2Dlod(tex, tex_coords, texel_off), gamma); }
|
||||
|
||||
|
||||
#endif // GAMMA_MANAGEMENT_H
|
||||
|
|
@ -0,0 +1,76 @@
|
|||
#ifndef _HELPER_FUNCTIONS_AND_MACROS_H
|
||||
#define _HELPER_FUNCTIONS_AND_MACROS_H
|
||||
|
||||
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||||
|
||||
// Copyright (C) 2020 Alex Gunter
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to
|
||||
// deal in the Software without restriction, including without limitation the
|
||||
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
// sell copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
// IN THE SOFTWARE.
|
||||
|
||||
|
||||
float4 tex2D_nograd(sampler2D tex, float2 tex_coords)
|
||||
{
|
||||
return tex2Dlod(tex, float4(tex_coords, 0, 0), 0.0);
|
||||
}
|
||||
|
||||
// ReShade 4 does not permit the use of functions or the ternary operator
|
||||
// outside of a function definition. This is a problem for this port
|
||||
// because the original crt-royale shader makes heavy use of these
|
||||
// constructs at the root level.
|
||||
|
||||
// These preprocessor definitions are a workaround for this limitation.
|
||||
// Note that they are strictly intended for defining complex global
|
||||
// constants. I doubt they're more performant than the built-in
|
||||
// equivalents, so I recommend using the built-ins whenever you can.
|
||||
|
||||
|
||||
#define macro_sign(c) -((int) ((c) != 0)) * -((int) ((c) > 0))
|
||||
#define macro_abs(c) (c) * macro_sign(c)
|
||||
|
||||
#define macro_min(c, d) (c) * ((int) ((c) <= (d))) + (d) * ((int) ((c) > (d)))
|
||||
#define macro_max(c, d) (c) * ((int) ((c) >= (d))) + (d) * ((int) ((c) < (d)))
|
||||
#define macro_clamp(c, l, u) macro_min(macro_max(c, l), u)
|
||||
|
||||
#define macro_ceil(c) (float) ((int) (c) + (int) (((int) (c)) < (c)))
|
||||
|
||||
#define macro_cond(c, a, b) float(c) * (a) + float(!(c)) * (b)
|
||||
|
||||
|
||||
|
||||
//////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
|
||||
|
||||
static const float pi = 3.141592653589;
|
||||
// We often want to find the location of the previous texel, e.g.:
|
||||
// const float2 curr_texel = uv * texture_size;
|
||||
// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
|
||||
// const float2 prev_texel_uv = prev_texel / texture_size;
|
||||
// However, many GPU drivers round incorrectly around exact texel locations.
|
||||
// We need to subtract a little less than 0.5 before flooring, and some GPU's
|
||||
// require this value to be farther from 0.5 than others; define it here.
|
||||
// const float2 prev_texel =
|
||||
// floor(curr_texel - float2(under_half)) + float2(0.5);
|
||||
static const float under_half = 0.4995;
|
||||
|
||||
// Avoid dividing by zero; using a macro overloads for float, float2, etc.:
|
||||
#define FIX_ZERO(c) (macro_max(macro_abs(c), 0.0000152587890625)) // 2^-16
|
||||
|
||||
// #define fmod(x, y) ((x) - (y) * floor((x)/(y) + FIX_ZERO(0.0)))
|
||||
#define fmod(x, y) (frac((x) / (y)) * (y))
|
||||
|
||||
#endif // _HELPER_FUNCTIONS_AND_MACROS_H
|
|
@ -0,0 +1,676 @@
|
|||
#ifndef PHOSPHOR_MASK_RESIZING_H
|
||||
#define PHOSPHOR_MASK_RESIZING_H
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "user-settings.fxh"
|
||||
#include "derived-settings-and-constants.fxh"
|
||||
|
||||
///////////////////////////// CODEPATH SELECTION /////////////////////////////
|
||||
|
||||
// Choose a looping strategy based on what's allowed:
|
||||
// Dynamic loops not allowed: Use a flat static loop.
|
||||
// Dynamic loops accomodated: Coarsely branch around static loops.
|
||||
// Dynamic loops assumed allowed: Use a flat dynamic loop.
|
||||
#ifndef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
#ifdef ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
#define BREAK_LOOPS_INTO_PIECES
|
||||
#else
|
||||
#define USE_SINGLE_STATIC_LOOP
|
||||
#endif
|
||||
#endif // No else needed: Dynamic loops assumed.
|
||||
|
||||
|
||||
////////////////////////////////// CONSTANTS /////////////////////////////////
|
||||
|
||||
// The larger the resized tile, the fewer samples we'll need for downsizing.
|
||||
// See if we can get a static min tile size > mask_min_allowed_tile_size:
|
||||
static const float mask_min_allowed_tile_size = macro_ceil(
|
||||
mask_min_allowed_triad_size * mask_triads_per_tile);
|
||||
static const float mask_min_expected_tile_size =
|
||||
mask_min_allowed_tile_size;
|
||||
// Limit the number of sinc resize taps by the maximum minification factor:
|
||||
static const float pi_over_lobes = pi/mask_sinc_lobes;
|
||||
static const float max_sinc_resize_samples_float = 2.0 * mask_sinc_lobes *
|
||||
mask_resize_src_lut_size.x/mask_min_expected_tile_size;
|
||||
// Vectorized loops sample in multiples of 4. Round up to be safe:
|
||||
static const float max_sinc_resize_samples_m4 = macro_ceil(
|
||||
max_sinc_resize_samples_float * 0.25) * 4.0;
|
||||
|
||||
|
||||
///////////////////////// RESAMPLING FUNCTION HELPERS ////////////////////////
|
||||
|
||||
float get_dynamic_loop_size(const float magnification_scale)
|
||||
{
|
||||
// Requires: The following global constants must be defined:
|
||||
// 1.) mask_sinc_lobes
|
||||
// 2.) max_sinc_resize_samples_m4
|
||||
// Returns: The minimum number of texture samples for a correct downsize
|
||||
// at magnification_scale.
|
||||
// We're downsizing, so the filter is sized across 2*lobes output pixels
|
||||
// (not 2*lobes input texels). This impacts distance measurements and the
|
||||
// minimum number of input samples needed.
|
||||
const float min_samples_float = 2.0 * mask_sinc_lobes / magnification_scale;
|
||||
const float min_samples_m4 = ceil(min_samples_float * 0.25) * 4.0;
|
||||
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
const float max_samples_m4 = max_sinc_resize_samples_m4;
|
||||
#else // ifdef BREAK_LOOPS_INTO_PIECES
|
||||
// Simulating loops with branches imposes a 128-sample limit.
|
||||
const float max_samples_m4 = min(128.0, max_sinc_resize_samples_m4);
|
||||
#endif
|
||||
return min(min_samples_m4, max_samples_m4);
|
||||
}
|
||||
|
||||
float2 get_first_texel_tile_uv_and_dist(const float2 tex_uv,
|
||||
const float2 texture_size, const float dr,
|
||||
const float input_tiles_per_texture_r, const float samples,
|
||||
const bool vertical)
|
||||
{
|
||||
// Requires: 1.) dr == du == 1.0/texture_size.x or
|
||||
// dr == dv == 1.0/texture_size.y
|
||||
// (whichever direction we're resampling in).
|
||||
// It's a scalar to save register space.
|
||||
// 2.) input_tiles_per_texture_r is the number of input tiles
|
||||
// that can fit in the input texture in the direction we're
|
||||
// resampling this pass.
|
||||
// 3.) vertical indicates whether we're resampling vertically
|
||||
// this pass (or horizontally).
|
||||
// Returns: Pack and return the first sample's tile_uv coord in [0, 1]
|
||||
// and its texel distance from the destination pixel, in the
|
||||
// resized dimension only.
|
||||
// We'll start with the topmost or leftmost sample and work down or right,
|
||||
// so get the first sample location and distance. Modify both dimensions
|
||||
// as if we're doing a one-pass 2D resize; we'll throw away the unneeded
|
||||
// (and incorrect) dimension at the end.
|
||||
const float2 curr_texel = tex_uv * texture_size;
|
||||
const float2 prev_texel = floor(curr_texel - under_half.xx) + 0.5.xx;
|
||||
const float2 first_texel = prev_texel - float2(samples.xx/2.0.xx - 1.0.xx);
|
||||
const float2 first_texel_uv_wrap_2D = first_texel * dr;
|
||||
const float2 first_texel_dist_2D = curr_texel - first_texel;
|
||||
// Convert from tex_uv to tile_uv coords so we can sub fracs for fmods.
|
||||
const float2 first_texel_tile_uv_wrap_2D =
|
||||
first_texel_uv_wrap_2D * input_tiles_per_texture_r;
|
||||
// Project wrapped coordinates to the [0, 1] range. We'll do this with all
|
||||
// samples,but the first texel is special, since it might be negative.
|
||||
const float2 coord_negative =
|
||||
float2(first_texel_tile_uv_wrap_2D < 0.0.xx);
|
||||
const float2 first_texel_tile_uv_2D =
|
||||
frac(first_texel_tile_uv_wrap_2D) + coord_negative;
|
||||
// Pack the first texel's tile_uv coord and texel distance in 1D:
|
||||
const float2 tile_u_and_dist =
|
||||
float2(first_texel_tile_uv_2D.x, first_texel_dist_2D.x);
|
||||
const float2 tile_v_and_dist =
|
||||
float2(first_texel_tile_uv_2D.y, first_texel_dist_2D.y);
|
||||
return vertical ? tile_v_and_dist : tile_u_and_dist;
|
||||
//return lerp(tile_u_and_dist, tile_v_and_dist, float(vertical));
|
||||
}
|
||||
|
||||
float4 tex2Dlod0try(const sampler2D tex, const float2 tex_uv)
|
||||
{
|
||||
// Mipmapping and anisotropic filtering get confused by sinc-resampling.
|
||||
// One [slow] workaround is to select the lowest mip level:
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
||||
return tex2Dlod(tex, float4(tex_uv, 0.0, 0.0));
|
||||
#else
|
||||
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
||||
return tex2Dbias(tex, float4(tex_uv, 0.0, -16.0));
|
||||
#else
|
||||
return tex2D(tex, tex_uv);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////// LOOP BODY MACROS //////////////////////////////
|
||||
|
||||
// Using functions can exceed the temporary register limit, so we're
|
||||
// stuck with #define macros (I'm TRULY sorry). They're declared here instead
|
||||
// of above to be closer to the actual invocation sites. Steps:
|
||||
// 1.) Get the exact texel location.
|
||||
// 2.) Sample the phosphor mask (already assumed encoded in linear RGB).
|
||||
// 3.) Get the distance from the current pixel and sinc weight:
|
||||
// sinc(dist) = sin(pi * dist)/(pi * dist)
|
||||
// We can also use the slower/smoother Lanczos instead:
|
||||
// L(x) = sinc(dist) * sinc(dist / lobes)
|
||||
// 4.) Accumulate the weight sum in weights, and accumulate the weighted texels
|
||||
// in pixel_color (we'll normalize outside the loop at the end).
|
||||
// We vectorize the loop to help reduce the Lanczos window's cost.
|
||||
|
||||
// The r coord is the coord in the dimension we're resizing along (u or v),
|
||||
// and first_texel_tile_uv_rrrr is a float4 of the first texel's u or v
|
||||
// tile_uv coord in [0, 1]. tex_uv_r will contain the tile_uv u or v coord
|
||||
// for four new texel samples.
|
||||
#define CALCULATE_R_COORD_FOR_4_SAMPLES \
|
||||
const float4 true_i = float4(i_base + i,i_base + i,i_base + i,i_base + i) + float4(0.0, 1.0, 2.0, 3.0); \
|
||||
const float4 tile_uv_r = frac( \
|
||||
first_texel_tile_uv_rrrr + true_i * tile_dr); \
|
||||
const float4 tex_uv_r = tile_uv_r * tile_size_uv_r;
|
||||
|
||||
#ifdef PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
#define CALCULATE_SINC_RESAMPLE_WEIGHTS \
|
||||
const float4 pi_dist_over_lobes = pi_over_lobes * dist; \
|
||||
const float4 weights = min(sin(pi_dist) * sin(pi_dist_over_lobes) /\
|
||||
(pi_dist*pi_dist_over_lobes), 1.0.xxxx);
|
||||
#else
|
||||
#define CALCULATE_SINC_RESAMPLE_WEIGHTS \
|
||||
const float4 weights = min(sin(pi_dist)/pi_dist, 1.0.xxxx);
|
||||
#endif
|
||||
|
||||
#define UPDATE_COLOR_AND_WEIGHT_SUMS \
|
||||
const float4 dist = magnification_scale * \
|
||||
abs(first_dist_unscaled - true_i); \
|
||||
const float4 pi_dist = pi * dist; \
|
||||
CALCULATE_SINC_RESAMPLE_WEIGHTS; \
|
||||
pixel_color += new_sample0 * weights.xxx; \
|
||||
pixel_color += new_sample1 * weights.yyy; \
|
||||
pixel_color += new_sample2 * weights.zzz; \
|
||||
pixel_color += new_sample3 * weights.www; \
|
||||
weight_sum += weights;
|
||||
|
||||
#define VERTICAL_SINC_RESAMPLE_LOOP_BODY \
|
||||
CALCULATE_R_COORD_FOR_4_SAMPLES; \
|
||||
const float3 new_sample0 = tex2Dlod0try(tex, \
|
||||
float2(tex_uv.x, tex_uv_r.x)).rgb; \
|
||||
const float3 new_sample1 = tex2Dlod0try(tex, \
|
||||
float2(tex_uv.x, tex_uv_r.y)).rgb; \
|
||||
const float3 new_sample2 = tex2Dlod0try(tex, \
|
||||
float2(tex_uv.x, tex_uv_r.z)).rgb; \
|
||||
const float3 new_sample3 = tex2Dlod0try(tex, \
|
||||
float2(tex_uv.x, tex_uv_r.w)).rgb; \
|
||||
UPDATE_COLOR_AND_WEIGHT_SUMS;
|
||||
|
||||
#define HORIZONTAL_SINC_RESAMPLE_LOOP_BODY \
|
||||
CALCULATE_R_COORD_FOR_4_SAMPLES; \
|
||||
const float3 new_sample0 = tex2Dlod0try(tex, \
|
||||
float2(tex_uv_r.x, tex_uv.y)).rgb; \
|
||||
const float3 new_sample1 = tex2Dlod0try(tex, \
|
||||
float2(tex_uv_r.y, tex_uv.y)).rgb; \
|
||||
const float3 new_sample2 = tex2Dlod0try(tex, \
|
||||
float2(tex_uv_r.z, tex_uv.y)).rgb; \
|
||||
const float3 new_sample3 = tex2Dlod0try(tex, \
|
||||
float2(tex_uv_r.w, tex_uv.y)).rgb; \
|
||||
UPDATE_COLOR_AND_WEIGHT_SUMS;
|
||||
|
||||
|
||||
//////////////////////////// RESAMPLING FUNCTIONS ////////////////////////////
|
||||
|
||||
float3 downsample_vertical_sinc_tiled(const sampler2D tex,
|
||||
const float2 tex_uv, const float2 texture_size, const float dr,
|
||||
const float magnification_scale, const float tile_size_uv_r)
|
||||
{
|
||||
// Requires: 1.) dr == du == 1.0/texture_size.x or
|
||||
// dr == dv == 1.0/texture_size.y
|
||||
// (whichever direction we're resampling in).
|
||||
// It's a scalar to save register space.
|
||||
// 2.) tile_size_uv_r is the number of texels an input tile
|
||||
// takes up in the input texture, in the direction we're
|
||||
// resampling this pass.
|
||||
// 3.) magnification_scale must be <= 1.0.
|
||||
// Returns: Return a [Lanczos] sinc-resampled pixel of a vertically
|
||||
// downsized input tile embedded in an input texture. (The
|
||||
// vertical version is special-cased though: It assumes the
|
||||
// tile size equals the [static] texture size, since it's used
|
||||
// on an LUT texture input containing one tile. For more
|
||||
// generic use, eliminate the "static" in the parameters.)
|
||||
// The "r" in "dr," "tile_size_uv_r," etc. refers to the dimension
|
||||
// we're resizing along, e.g. "dy" in this case.
|
||||
#ifdef USE_SINGLE_STATIC_LOOP
|
||||
// A static loop can be faster, but it might blur too much from using
|
||||
// more samples than it should.
|
||||
static const int samples = int(max_sinc_resize_samples_m4);
|
||||
#else
|
||||
const int samples = int(get_dynamic_loop_size(magnification_scale));
|
||||
#endif
|
||||
|
||||
// Get the first sample location (scalar tile uv coord along the resized
|
||||
// dimension) and distance from the output location (in texels):
|
||||
static const float input_tiles_per_texture_r = 1.0/tile_size_uv_r;
|
||||
// true = vertical resize:
|
||||
const float2 first_texel_tile_r_and_dist = get_first_texel_tile_uv_and_dist(
|
||||
tex_uv, texture_size, dr, input_tiles_per_texture_r, samples, true);
|
||||
const float4 first_texel_tile_uv_rrrr = first_texel_tile_r_and_dist.xxxx;
|
||||
const float4 first_dist_unscaled = first_texel_tile_r_and_dist.yyyy;
|
||||
// Get the tile sample offset:
|
||||
static const float tile_dr = dr * input_tiles_per_texture_r;
|
||||
|
||||
// Sum up each weight and weighted sample color, varying the looping
|
||||
// strategy based on our expected dynamic loop capabilities. See the
|
||||
// loop body macros above.
|
||||
int i_base = 0;
|
||||
float4 weight_sum = 0.0.xxxx;
|
||||
float3 pixel_color = 0.0.xxx;
|
||||
static const int i_step = 4;
|
||||
#ifdef BREAK_LOOPS_INTO_PIECES
|
||||
if(samples - i_base >= 64)
|
||||
{
|
||||
for(int i = 0; i < 64; i += i_step)
|
||||
{
|
||||
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 64;
|
||||
}
|
||||
if(samples - i_base >= 32)
|
||||
{
|
||||
for(int i = 0; i < 32; i += i_step)
|
||||
{
|
||||
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 32;
|
||||
}
|
||||
if(samples - i_base >= 16)
|
||||
{
|
||||
for(int i = 0; i < 16; i += i_step)
|
||||
{
|
||||
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 16;
|
||||
}
|
||||
if(samples - i_base >= 8)
|
||||
{
|
||||
for(int i = 0; i < 8; i += i_step)
|
||||
{
|
||||
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 8;
|
||||
}
|
||||
if(samples - i_base >= 4)
|
||||
{
|
||||
for(int i = 0; i < 4; i += i_step)
|
||||
{
|
||||
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 4;
|
||||
}
|
||||
// Do another 4-sample block for a total of 128 max samples.
|
||||
if(samples - i_base > 0)
|
||||
{
|
||||
for(int i = 0; i < 4; i += i_step)
|
||||
{
|
||||
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
}
|
||||
#else
|
||||
for(int i = 0; i < samples; i += i_step)
|
||||
{
|
||||
VERTICAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
#endif
|
||||
// Normalize so the weight_sum == 1.0, and return:
|
||||
const float2 weight_sum_reduce = weight_sum.xy + weight_sum.zw;
|
||||
const float3 scalar_weight_sum = float3(weight_sum_reduce.xxx +
|
||||
weight_sum_reduce.yyy);
|
||||
return (pixel_color/scalar_weight_sum);
|
||||
}
|
||||
|
||||
float3 downsample_horizontal_sinc_tiled(const sampler2D tex,
|
||||
const float2 tex_uv, const float2 texture_size, const float dr,
|
||||
const float magnification_scale, const float tile_size_uv_r)
|
||||
{
|
||||
// Differences from downsample_horizontal_sinc_tiled:
|
||||
// 1.) The dr and tile_size_uv_r parameters are not static consts.
|
||||
// 2.) The "vertical" parameter to get_first_texel_tile_uv_and_dist is
|
||||
// set to false instead of true.
|
||||
// 3.) The horizontal version of the loop body is used.
|
||||
// TODO: If we can get guaranteed compile-time dead code elimination,
|
||||
// we can combine the vertical/horizontal downsampling functions by:
|
||||
// 1.) Add an extra static const bool parameter called "vertical."
|
||||
// 2.) Supply it with the result of get_first_texel_tile_uv_and_dist().
|
||||
// 3.) Use a conditional assignment in the loop body macro. This is the
|
||||
// tricky part: We DO NOT want to incur the extra conditional
|
||||
// assignment in the inner loop at runtime!
|
||||
// The "r" in "dr," "tile_size_uv_r," etc. refers to the dimension
|
||||
// we're resizing along, e.g. "dx" in this case.
|
||||
#ifdef USE_SINGLE_STATIC_LOOP
|
||||
// If we have to load all samples, we might as well use them.
|
||||
static const int samples = int(max_sinc_resize_samples_m4);
|
||||
#else
|
||||
const int samples = int(get_dynamic_loop_size(magnification_scale));
|
||||
#endif
|
||||
|
||||
// Get the first sample location (scalar tile uv coord along resized
|
||||
// dimension) and distance from the output location (in texels):
|
||||
const float input_tiles_per_texture_r = 1.0/tile_size_uv_r;
|
||||
// false = horizontal resize:
|
||||
const float2 first_texel_tile_r_and_dist = get_first_texel_tile_uv_and_dist(
|
||||
tex_uv, texture_size, dr, input_tiles_per_texture_r, samples, false);
|
||||
const float4 first_texel_tile_uv_rrrr = first_texel_tile_r_and_dist.xxxx;
|
||||
const float4 first_dist_unscaled = first_texel_tile_r_and_dist.yyyy;
|
||||
// Get the tile sample offset:
|
||||
const float tile_dr = dr * input_tiles_per_texture_r;
|
||||
|
||||
// Sum up each weight and weighted sample color, varying the looping
|
||||
// strategy based on our expected dynamic loop capabilities. See the
|
||||
// loop body macros above.
|
||||
int i_base = 0;
|
||||
float4 weight_sum = 0.0.xxxx;
|
||||
float3 pixel_color = 0.0.xxx;
|
||||
static const int i_step = 4;
|
||||
#ifdef BREAK_LOOPS_INTO_PIECES
|
||||
if(samples - i_base >= 64)
|
||||
{
|
||||
for(int i = 0; i < 64; i += i_step)
|
||||
{
|
||||
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 64;
|
||||
}
|
||||
if(samples - i_base >= 32)
|
||||
{
|
||||
for(int i = 0; i < 32; i += i_step)
|
||||
{
|
||||
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 32;
|
||||
}
|
||||
if(samples - i_base >= 16)
|
||||
{
|
||||
for(int i = 0; i < 16; i += i_step)
|
||||
{
|
||||
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 16;
|
||||
}
|
||||
if(samples - i_base >= 8)
|
||||
{
|
||||
for(int i = 0; i < 8; i += i_step)
|
||||
{
|
||||
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 8;
|
||||
}
|
||||
if(samples - i_base >= 4)
|
||||
{
|
||||
for(int i = 0; i < 4; i += i_step)
|
||||
{
|
||||
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
i_base += 4;
|
||||
}
|
||||
// Do another 4-sample block for a total of 128 max samples.
|
||||
if(samples - i_base > 0)
|
||||
{
|
||||
for(int i = 0; i < 4; i += i_step)
|
||||
{
|
||||
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
}
|
||||
#else
|
||||
for(int i = 0; i < samples; i += i_step)
|
||||
{
|
||||
HORIZONTAL_SINC_RESAMPLE_LOOP_BODY;
|
||||
}
|
||||
#endif
|
||||
// Normalize so the weight_sum == 1.0, and return:
|
||||
const float2 weight_sum_reduce = weight_sum.xy + weight_sum.zw;
|
||||
const float3 scalar_weight_sum = float3(weight_sum_reduce.xxx +
|
||||
weight_sum_reduce.yyy);
|
||||
return (pixel_color/scalar_weight_sum);
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////// TILE SIZE CALCULATION ///////////////////////////
|
||||
|
||||
float2 get_resized_mask_tile_size(const float2 estimated_viewport_size,
|
||||
const float2 estimated_mask_resize_output_size,
|
||||
const bool solemnly_swear_same_inputs_for_every_pass)
|
||||
{
|
||||
// Requires: The following global constants must be defined according to
|
||||
// certain constraints:
|
||||
// 1.) mask_resize_num_triads: Must be high enough that our
|
||||
// mask sampling method won't have artifacts later
|
||||
// (long story; see derived-settings-and-constants.h)
|
||||
// 2.) mask_resize_src_lut_size: Texel size of our mask LUT
|
||||
// 3.) mask_triads_per_tile: Num horizontal triads in our LUT
|
||||
// 4.) mask_min_allowed_triad_size: User setting (the more
|
||||
// restrictive it is, the faster the resize will go)
|
||||
// 5.) mask_min_allowed_tile_size_x < mask_resize_src_lut_size.x
|
||||
// 6.) mask_triad_size_desired_{runtime, static}
|
||||
// 7.) mask_num_triads_desired_{runtime, static}
|
||||
// 8.) mask_specify_num_triads must be 0.0/1.0 (false/true)
|
||||
// The function parameters must be defined as follows:
|
||||
// 1.) estimated_viewport_size == (final viewport size);
|
||||
// If mask_specify_num_triads is 1.0/true and the viewport
|
||||
// estimate is wrong, the number of triads will differ from
|
||||
// the user's preference by about the same factor.
|
||||
// 2.) estimated_mask_resize_output_size: Must equal the
|
||||
// output size of the MASK_RESIZE pass.
|
||||
// Exception: The x component may be estimated garbage if
|
||||
// and only if the caller throws away the x result.
|
||||
// 3.) solemnly_swear_same_inputs_for_every_pass: Set to false,
|
||||
// unless you can guarantee that every call across every
|
||||
// pass will use the same sizes for the other parameters.
|
||||
// When calling this across multiple passes, always use the
|
||||
// same y viewport size/scale, and always use the same x
|
||||
// viewport size/scale when using the x result.
|
||||
// Returns: Return the final size of a manually resized mask tile, after
|
||||
// constraining the desired size to avoid artifacts. Under
|
||||
// unusual circumstances, tiles may become stretched vertically
|
||||
// (see wall of text below).
|
||||
// Stated tile properties must be correct:
|
||||
static const float tile_aspect_ratio_inv =
|
||||
mask_resize_src_lut_size.y/mask_resize_src_lut_size.x;
|
||||
static const float tile_aspect_ratio = 1.0/tile_aspect_ratio_inv;
|
||||
static const float2 tile_aspect = float2(1.0, tile_aspect_ratio_inv);
|
||||
// If mask_specify_num_triads is 1.0/true and estimated_viewport_size.x is
|
||||
// wrong, the user preference will be misinterpreted:
|
||||
const float desired_tile_size_x = mask_triads_per_tile * lerp(
|
||||
mask_triad_size_desired,
|
||||
estimated_viewport_size.x / mask_num_triads_desired,
|
||||
mask_specify_num_triads);
|
||||
if(get_mask_sample_mode() > 0.5)
|
||||
{
|
||||
// We don't need constraints unless we're sampling MASK_RESIZE.
|
||||
return desired_tile_size_x * tile_aspect;
|
||||
}
|
||||
// Make sure we're not upsizing:
|
||||
const float temp_tile_size_x =
|
||||
min(desired_tile_size_x, mask_resize_src_lut_size.x);
|
||||
// Enforce min_tile_size and max_tile_size in both dimensions:
|
||||
const float2 temp_tile_size = temp_tile_size_x * tile_aspect;
|
||||
static const float2 min_tile_size =
|
||||
mask_min_allowed_tile_size * tile_aspect;
|
||||
const float2 max_tile_size =
|
||||
estimated_mask_resize_output_size / mask_resize_num_tiles;
|
||||
const float2 clamped_tile_size =
|
||||
clamp(temp_tile_size, min_tile_size, max_tile_size);
|
||||
// Try to maintain tile_aspect_ratio. This is the tricky part:
|
||||
// If we're currently resizing in the y dimension, the x components
|
||||
// could be MEANINGLESS. (If estimated_mask_resize_output_size.x is
|
||||
// bogus, then so is max_tile_size.x and clamped_tile_size.x.)
|
||||
// We can't adjust the y size based on clamped_tile_size.x. If it
|
||||
// clamps when it shouldn't, it won't clamp again when later passes
|
||||
// call this function with the correct sizes, and the discrepancy will
|
||||
// break the sampling coords in MASKED_SCANLINES. Instead, we'll limit
|
||||
// the x size based on the y size, but not vice versa, unless the
|
||||
// caller swears the parameters were the same (correct) in every pass.
|
||||
// As a result, triads could appear vertically stretched if:
|
||||
// a.) mask_resize_src_lut_size.x > mask_resize_src_lut_size.y: Wide
|
||||
// LUT's might clamp x more than y (all provided LUT's are square)
|
||||
// b.) true_viewport_size.x < true_viewport_size.y: The user is playing
|
||||
// with a vertically oriented screen (not accounted for anyway)
|
||||
// c.) mask_resize_viewport_scale.x < masked_resize_viewport_scale.y:
|
||||
// Viewport scales are equal by default.
|
||||
// If any of these are the case, you can fix the stretching by setting:
|
||||
// mask_resize_viewport_scale.x = mask_resize_viewport_scale.y *
|
||||
// (1.0 / min_expected_aspect_ratio) *
|
||||
// (mask_resize_src_lut_size.x / mask_resize_src_lut_size.y)
|
||||
const float x_tile_size_from_y =
|
||||
clamped_tile_size.y * tile_aspect_ratio;
|
||||
const float y_tile_size_from_x = lerp(clamped_tile_size.y,
|
||||
clamped_tile_size.x * tile_aspect_ratio_inv,
|
||||
float(solemnly_swear_same_inputs_for_every_pass));
|
||||
const float2 reclamped_tile_size = float2(
|
||||
min(clamped_tile_size.x, x_tile_size_from_y),
|
||||
min(clamped_tile_size.y, y_tile_size_from_x));
|
||||
// We need integer tile sizes in both directions for tiled sampling to
|
||||
// work correctly. Use floor (to make sure we don't round up), but be
|
||||
// careful to avoid a rounding bug where floor decreases whole numbers:
|
||||
const float2 final_resized_tile_size =
|
||||
floor(reclamped_tile_size + float2(FIX_ZERO(0.0),FIX_ZERO(0.0)));
|
||||
return final_resized_tile_size;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////// FINAL MASK SAMPLING HELPERS ////////////////////////
|
||||
|
||||
float4 get_mask_sampling_parameters(const float2 mask_resize_texture_size,
|
||||
const float2 mask_resize_video_size, const float2 true_viewport_size,
|
||||
out float2 mask_tiles_per_screen)
|
||||
{
|
||||
// Requires: 1.) Requirements of get_resized_mask_tile_size() must be
|
||||
// met, particularly regarding global constants.
|
||||
// The function parameters must be defined as follows:
|
||||
// 1.) mask_resize_texture_size == MASK_RESIZE.texture_size
|
||||
// if get_mask_sample_mode() is 0 (otherwise anything)
|
||||
// 2.) mask_resize_video_size == MASK_RESIZE.video_size
|
||||
// if get_mask_sample_mode() is 0 (otherwise anything)
|
||||
// 3.) true_viewport_size == IN.output_size for a pass set to
|
||||
// 1.0 viewport scale (i.e. it must be correct)
|
||||
// Returns: Return a float4 containing:
|
||||
// xy: tex_uv coords for the start of the mask tile
|
||||
// zw: tex_uv size of the mask tile from start to end
|
||||
// mask_tiles_per_screen is an out parameter containing the
|
||||
// number of mask tiles that will fit on the screen.
|
||||
// First get the final resized tile size. The viewport size and mask
|
||||
// resize viewport scale must be correct, but don't solemnly swear they
|
||||
// were correct in both mask resize passes unless you know it's true.
|
||||
// (We can better ensure a correct tile aspect ratio if the parameters are
|
||||
// guaranteed correct in all passes...but if we lie, we'll get inconsistent
|
||||
// sizes across passes, resulting in broken texture coordinates.)
|
||||
const float mask_sample_mode = get_mask_sample_mode();
|
||||
const float2 mask_resize_tile_size = get_resized_mask_tile_size(
|
||||
true_viewport_size, mask_resize_video_size, false);
|
||||
if(mask_sample_mode < 0.5)
|
||||
{
|
||||
// Sample MASK_RESIZE: The resized tile is a fraction of the texture
|
||||
// size and starts at a nonzero offset to allow for border texels:
|
||||
const float2 mask_tile_uv_size = mask_resize_tile_size /
|
||||
mask_resize_texture_size;
|
||||
const float2 skipped_tiles = mask_start_texels/mask_resize_tile_size;
|
||||
const float2 mask_tile_start_uv = skipped_tiles * mask_tile_uv_size;
|
||||
// mask_tiles_per_screen must be based on the *true* viewport size:
|
||||
mask_tiles_per_screen = true_viewport_size / mask_resize_tile_size;
|
||||
return float4(mask_tile_start_uv, mask_tile_uv_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
// If we're tiling at the original size (1:1 pixel:texel), redefine a
|
||||
// "tile" to be the full texture containing many triads. Otherwise,
|
||||
// we're hardware-resampling an LUT, and the texture truly contains a
|
||||
// single unresized phosphor mask tile anyway.
|
||||
static const float2 mask_tile_uv_size = 1.0.xx;
|
||||
static const float2 mask_tile_start_uv = 0.0.xx;
|
||||
if(mask_sample_mode > 1.5)
|
||||
{
|
||||
// Repeat the full LUT at a 1:1 pixel:texel ratio without resizing:
|
||||
mask_tiles_per_screen = true_viewport_size/mask_texture_large_size;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Hardware-resize the original LUT:
|
||||
mask_tiles_per_screen = true_viewport_size / mask_resize_tile_size;
|
||||
}
|
||||
return float4(mask_tile_start_uv, mask_tile_uv_size);
|
||||
}
|
||||
}
|
||||
|
||||
float2 fix_tiling_discontinuities_normalized(const float2 tile_uv,
|
||||
float2 duv_dx, float2 duv_dy)
|
||||
{
|
||||
// Requires: 1.) duv_dx == ddx(tile_uv)
|
||||
// 2.) duv_dy == ddy(tile_uv)
|
||||
// 3.) tile_uv contains tile-relative uv coords in [0, 1],
|
||||
// such that (0.5, 0.5) is the center of a tile, etc.
|
||||
// ("Tile" can mean texture, the video embedded in the
|
||||
// texture, or some other "tile" embedded in a texture.)
|
||||
// Returns: Return new tile_uv coords that contain no discontinuities
|
||||
// across a 2x2 pixel quad.
|
||||
// Description:
|
||||
// When uv coords wrap from 1.0 to 0.0, they create a discontinuity in the
|
||||
// derivatives, which we assume happened if the absolute difference between
|
||||
// any fragment in a 2x2 block is > ~half a tile. If the current block has
|
||||
// a u or v discontinuity and the current fragment is in the first half of
|
||||
// the tile along that axis (i.e. it wrapped from 1.0 to 0.0), add a tile
|
||||
// to that coord to make the 2x2 block continuous. (It will now have a
|
||||
// coord > 1.0 in the padding area beyond the tile.) This function takes
|
||||
// derivatives as parameters so the caller can reuse them.
|
||||
// In case we're using high-quality (nVidia-style) derivatives, ensure
|
||||
// diagonically opposite fragments see each other for correctness:
|
||||
duv_dx = abs(duv_dx) + abs(ddy(duv_dx));
|
||||
duv_dy = abs(duv_dy) + abs(ddx(duv_dy));
|
||||
const float2 pixel_in_first_half_tile = float2(tile_uv < 0.5.xx);
|
||||
const float2 jump_exists = float2(duv_dx + duv_dy > 0.5.xx);
|
||||
return tile_uv + jump_exists * pixel_in_first_half_tile;
|
||||
}
|
||||
|
||||
float2 convert_phosphor_tile_uv_wrap_to_tex_uv(const float2 tile_uv_wrap,
|
||||
const float4 mask_tile_start_uv_and_size)
|
||||
{
|
||||
// Requires: 1.) tile_uv_wrap contains tile-relative uv coords, where the
|
||||
// tile spans from [0, 1], such that (0.5, 0.5) is at the
|
||||
// tile center. The input coords can range from [0, inf],
|
||||
// and their fractional parts map to a repeated tile.
|
||||
// ("Tile" can mean texture, the video embedded in the
|
||||
// texture, or some other "tile" embedded in a texture.)
|
||||
// 2.) mask_tile_start_uv_and_size.xy contains tex_uv coords
|
||||
// for the start of the embedded tile in the full texture.
|
||||
// 3.) mask_tile_start_uv_and_size.zw contains the [fractional]
|
||||
// tex_uv size of the embedded tile in the full texture.
|
||||
// Returns: Return tex_uv coords (used for texture sampling)
|
||||
// corresponding to tile_uv_wrap.
|
||||
if(get_mask_sample_mode() < 0.5)
|
||||
{
|
||||
// Manually repeat the resized mask tile to fill the screen:
|
||||
// First get fractional tile_uv coords. Using frac/fmod on coords
|
||||
// confuses anisotropic filtering; fix it as user options dictate.
|
||||
// derived-settings-and-constants.h disables incompatible options.
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
||||
float2 tile_uv = frac(tile_uv_wrap * 0.5) * 2.0;
|
||||
#else
|
||||
float2 tile_uv = frac(tile_uv_wrap);
|
||||
#endif
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
||||
const float2 tile_uv_dx = ddx(tile_uv);
|
||||
const float2 tile_uv_dy = ddy(tile_uv);
|
||||
tile_uv = fix_tiling_discontinuities_normalized(tile_uv,
|
||||
tile_uv_dx, tile_uv_dy);
|
||||
#endif
|
||||
// The tile is embedded in a padded FBO, and it may start at a
|
||||
// nonzero offset if border texels are used to avoid artifacts:
|
||||
const float2 mask_tex_uv = mask_tile_start_uv_and_size.xy +
|
||||
tile_uv * mask_tile_start_uv_and_size.zw;
|
||||
return mask_tex_uv;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Sample from the input phosphor mask texture with hardware tiling.
|
||||
// If we're tiling at the original size (mode 2), the "tile" is the
|
||||
// whole texture, and it contains a large number of triads mapped with
|
||||
// a 1:1 pixel:texel ratio. OTHERWISE, the texture contains a single
|
||||
// unresized tile. tile_uv_wrap already has correct coords for both!
|
||||
return tile_uv_wrap;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif // PHOSPHOR_MASK_RESIZING_H
|
||||
|
|
@ -0,0 +1,243 @@
|
|||
#ifndef QUAD_PIXEL_COMMUNICATION_H
|
||||
#define QUAD_PIXEL_COMMUNICATION_H
|
||||
|
||||
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||||
|
||||
// Copyright (C) 2014 TroggleMonkey*
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to
|
||||
// deal in the Software without restriction, including without limitation the
|
||||
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
// sell copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
// IN THE SOFTWARE.
|
||||
|
||||
///////////////////////////////// DISCLAIMER /////////////////////////////////
|
||||
|
||||
// *This code was inspired by "Shader Amortization using Pixel Quad Message
|
||||
// Passing" by Eric Penner, published in GPU Pro 2, Chapter VI.2. My intent
|
||||
// is not to plagiarize his fundamentally similar code and assert my own
|
||||
// copyright, but the algorithmic helper functions require so little code that
|
||||
// implementations can't vary by much except bugfixes and conventions. I just
|
||||
// wanted to license my own particular code here to avoid ambiguity and make it
|
||||
// clear that as far as I'm concerned, people can do as they please with it.
|
||||
|
||||
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||||
|
||||
// Given screen pixel numbers, derive a "quad vector" describing a fragment's
|
||||
// position in its 2x2 pixel quad. Given that vector, obtain the values of any
|
||||
// variable at neighboring fragments.
|
||||
// Requires: Using this file in general requires:
|
||||
// 1.) ddx() and ddy() are present in the current Cg profile.
|
||||
// 2.) The GPU driver is using fine/high-quality derivatives.
|
||||
// Functions will give incorrect results if this is not true,
|
||||
// so a test function is included.
|
||||
|
||||
|
||||
///////////////////// QUAD-PIXEL COMMUNICATION PRIMITIVES ////////////////////
|
||||
|
||||
float4 get_quad_vector_naive(const float4 output_pixel_num_wrt_uvxy)
|
||||
{
|
||||
// Requires: Two measures of the current fragment's output pixel number
|
||||
// in the range ([0, IN.output_size.x), [0, IN.output_size.y)):
|
||||
// 1.) output_pixel_num_wrt_uvxy.xy increase with uv coords.
|
||||
// 2.) output_pixel_num_wrt_uvxy.zw increase with screen xy.
|
||||
// Returns: Two measures of the fragment's position in its 2x2 quad:
|
||||
// 1.) The .xy components are its 2x2 placement with respect to
|
||||
// uv direction (the origin (0, 0) is at the top-left):
|
||||
// top-left = (-1.0, -1.0) top-right = ( 1.0, -1.0)
|
||||
// bottom-left = (-1.0, 1.0) bottom-right = ( 1.0, 1.0)
|
||||
// You need this to arrange/weight shared texture samples.
|
||||
// 2.) The .zw components are its 2x2 placement with respect to
|
||||
// screen xy direction (IN.position); the origin varies.
|
||||
// quad_gather needs this measure to work correctly.
|
||||
// Note: quad_vector.zw = quad_vector.xy * float2(
|
||||
// ddx(output_pixel_num_wrt_uvxy.x),
|
||||
// ddy(output_pixel_num_wrt_uvxy.y));
|
||||
// Caveats: This function assumes the GPU driver always starts 2x2 pixel
|
||||
// quads at even pixel numbers. This assumption can be wrong
|
||||
// for odd output resolutions (nondeterministically so).
|
||||
const float4 pixel_odd = frac(output_pixel_num_wrt_uvxy * 0.5) * 2.0;
|
||||
const float4 quad_vector = pixel_odd * 2.0 - 1.0.xxxx;
|
||||
return quad_vector;
|
||||
}
|
||||
|
||||
float4 get_quad_vector(const float4 output_pixel_num_wrt_uvxy)
|
||||
{
|
||||
// Requires: Same as get_quad_vector_naive() (see that first).
|
||||
// Returns: Same as get_quad_vector_naive() (see that first), but it's
|
||||
// correct even if the 2x2 pixel quad starts at an odd pixel,
|
||||
// which can occur at odd resolutions.
|
||||
const float4 quad_vector_guess =
|
||||
get_quad_vector_naive(output_pixel_num_wrt_uvxy);
|
||||
// If quad_vector_guess.zw doesn't increase with screen xy, we know
|
||||
// the 2x2 pixel quad starts at an odd pixel:
|
||||
const float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_guess.z),
|
||||
ddy(quad_vector_guess.w));
|
||||
return quad_vector_guess * odd_start_mirror.xyxy;
|
||||
}
|
||||
|
||||
float4 get_quad_vector(const float2 output_pixel_num_wrt_uv)
|
||||
{
|
||||
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
|
||||
// 2.) output_pixel_num_wrt_uv must increase with uv coords and
|
||||
// measure the current fragment's output pixel number in:
|
||||
// ([0, IN.output_size.x), [0, IN.output_size.y))
|
||||
// Returns: Same as get_quad_vector_naive() (see that first), but it's
|
||||
// correct even if the 2x2 pixel quad starts at an odd pixel,
|
||||
// which can occur at odd resolutions.
|
||||
// Caveats: This function requires less information than the version
|
||||
// taking a float4, but it's potentially slower.
|
||||
// Do screen coords increase with or against uv? Get the direction
|
||||
// with respect to (uv.x, uv.y) for (screen.x, screen.y) in {-1, 1}.
|
||||
const float2 screen_uv_mirror = float2(ddx(output_pixel_num_wrt_uv.x),
|
||||
ddy(output_pixel_num_wrt_uv.y));
|
||||
const float2 pixel_odd_wrt_uv = frac(output_pixel_num_wrt_uv * 0.5) * 2.0;
|
||||
const float2 quad_vector_uv_guess = (pixel_odd_wrt_uv - 0.5.xx) * 2.0;
|
||||
const float2 quad_vector_screen_guess = quad_vector_uv_guess * screen_uv_mirror;
|
||||
// If quad_vector_screen_guess doesn't increase with screen xy, we know
|
||||
// the 2x2 pixel quad starts at an odd pixel:
|
||||
const float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_screen_guess.x),
|
||||
ddy(quad_vector_screen_guess.y));
|
||||
const float4 quad_vector_guess = float4(
|
||||
quad_vector_uv_guess, quad_vector_screen_guess);
|
||||
return quad_vector_guess * odd_start_mirror.xyxy;
|
||||
}
|
||||
|
||||
void quad_gather(const float4 quad_vector, const float4 curr,
|
||||
out float4 adjx, out float4 adjy, out float4 diag)
|
||||
{
|
||||
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
|
||||
// 2.) The GPU driver is using fine/high-quality derivatives.
|
||||
// 3.) quad_vector describes the current fragment's location in
|
||||
// its 2x2 pixel quad using get_quad_vector()'s conventions.
|
||||
// 4.) curr is any vector you wish to get neighboring values of.
|
||||
// Returns: Values of an input vector (curr) at neighboring fragments
|
||||
// adjacent x, adjacent y, and diagonal (via out parameters).
|
||||
adjx = curr - ddx(curr) * quad_vector.z;
|
||||
adjy = curr - ddy(curr) * quad_vector.w;
|
||||
diag = adjx - ddy(adjx) * quad_vector.w;
|
||||
}
|
||||
|
||||
void quad_gather(const float4 quad_vector, const float3 curr,
|
||||
out float3 adjx, out float3 adjy, out float3 diag)
|
||||
{
|
||||
// Float3 version
|
||||
adjx = curr - ddx(curr) * quad_vector.z;
|
||||
adjy = curr - ddy(curr) * quad_vector.w;
|
||||
diag = adjx - ddy(adjx) * quad_vector.w;
|
||||
}
|
||||
|
||||
void quad_gather(const float4 quad_vector, const float2 curr,
|
||||
out float2 adjx, out float2 adjy, out float2 diag)
|
||||
{
|
||||
// Float2 version
|
||||
adjx = curr - ddx(curr) * quad_vector.z;
|
||||
adjy = curr - ddy(curr) * quad_vector.w;
|
||||
diag = adjx - ddy(adjx) * quad_vector.w;
|
||||
}
|
||||
|
||||
float4 quad_gather(const float4 quad_vector, const float curr)
|
||||
{
|
||||
// Float version:
|
||||
// Returns: return.x == current
|
||||
// return.y == adjacent x
|
||||
// return.z == adjacent y
|
||||
// return.w == diagonal
|
||||
float4 all = curr.xxxx;
|
||||
all.y = all.x - ddx(all.x) * quad_vector.z;
|
||||
all.zw = all.xy - ddy(all.xy) * quad_vector.w;
|
||||
return all;
|
||||
}
|
||||
|
||||
float4 quad_gather_sum(const float4 quad_vector, const float4 curr)
|
||||
{
|
||||
// Requires: Same as quad_gather()
|
||||
// Returns: Sum of an input vector (curr) at all fragments in a quad.
|
||||
float4 adjx, adjy, diag;
|
||||
quad_gather(quad_vector, curr, adjx, adjy, diag);
|
||||
return (curr + adjx + adjy + diag);
|
||||
}
|
||||
|
||||
float3 quad_gather_sum(const float4 quad_vector, const float3 curr)
|
||||
{
|
||||
// Float3 version:
|
||||
float3 adjx, adjy, diag;
|
||||
quad_gather(quad_vector, curr, adjx, adjy, diag);
|
||||
return (curr + adjx + adjy + diag);
|
||||
}
|
||||
|
||||
float2 quad_gather_sum(const float4 quad_vector, const float2 curr)
|
||||
{
|
||||
// Float2 version:
|
||||
float2 adjx, adjy, diag;
|
||||
quad_gather(quad_vector, curr, adjx, adjy, diag);
|
||||
return (curr + adjx + adjy + diag);
|
||||
}
|
||||
|
||||
float quad_gather_sum(const float4 quad_vector, const float curr)
|
||||
{
|
||||
// Float version:
|
||||
const float4 all_values = quad_gather(quad_vector, curr);
|
||||
return (all_values.x + all_values.y + all_values.z + all_values.w);
|
||||
}
|
||||
|
||||
bool fine_derivatives_working(const float4 quad_vector, float4 curr)
|
||||
{
|
||||
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
|
||||
// 2.) quad_vector describes the current fragment's location in
|
||||
// its 2x2 pixel quad using get_quad_vector()'s conventions.
|
||||
// 3.) curr must be a test vector with non-constant derivatives
|
||||
// (its value should change nonlinearly across fragments).
|
||||
// Returns: true if fine/hybrid/high-quality derivatives are used, or
|
||||
// false if coarse derivatives are used or inconclusive
|
||||
// Usage: Test whether quad-pixel communication is working!
|
||||
// Method: We can confirm fine derivatives are used if the following
|
||||
// holds (ever, for any value at any fragment):
|
||||
// (ddy(curr) != ddy(adjx)) or (ddx(curr) != ddx(adjy))
|
||||
// The more values we test (e.g. test a float4 two ways), the
|
||||
// easier it is to demonstrate fine derivatives are working.
|
||||
// TODO: Check for floating point exact comparison issues!
|
||||
float4 ddx_curr = ddx(curr);
|
||||
float4 ddy_curr = ddy(curr);
|
||||
float4 adjx = curr - ddx_curr * quad_vector.z;
|
||||
float4 adjy = curr - ddy_curr * quad_vector.w;
|
||||
bool ddy_different = any(ddy_curr != ddy(adjx));
|
||||
bool ddx_different = any(ddx_curr != ddx(adjy));
|
||||
return any(bool2(ddy_different, ddx_different));
|
||||
}
|
||||
|
||||
bool fine_derivatives_working_fast(const float4 quad_vector, float curr)
|
||||
{
|
||||
// Requires: Same as fine_derivatives_working()
|
||||
// Returns: Same as fine_derivatives_working()
|
||||
// Usage: This is faster than fine_derivatives_working() but more
|
||||
// likely to return false negatives, so it's less useful for
|
||||
// offline testing/debugging. It's also useless as the basis
|
||||
// for dynamic runtime branching as of May 2014: Derivatives
|
||||
// (and quad-pixel communication) are currently disallowed in
|
||||
// branches. However, future GPU's may allow you to use them
|
||||
// in dynamic branches if you promise the branch condition
|
||||
// evaluates the same for every fragment in the quad (and/or if
|
||||
// the driver enforces that promise by making a single fragment
|
||||
// control branch decisions). If that ever happens, this
|
||||
// version may become a more economical choice.
|
||||
float ddx_curr = ddx(curr);
|
||||
float ddy_curr = ddy(curr);
|
||||
float adjx = curr - ddx_curr * quad_vector.z;
|
||||
return (ddy_curr != ddy(adjx));
|
||||
}
|
||||
|
||||
#endif // QUAD_PIXEL_COMMUNICATION_H
|
||||
|
|
@ -0,0 +1,569 @@
|
|||
#ifndef SCANLINE_FUNCTIONS_H
|
||||
#define SCANLINE_FUNCTIONS_H
|
||||
|
||||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "user-settings.fxh"
|
||||
#include "derived-settings-and-constants.fxh"
|
||||
#include "special-functions.fxh"
|
||||
#include "gamma-management.fxh"
|
||||
|
||||
|
||||
///////////////////////////// SCANLINE FUNCTIONS /////////////////////////////
|
||||
|
||||
float3 get_gaussian_sigma(const float3 color, const float sigma_range)
|
||||
{
|
||||
// Requires: Globals:
|
||||
// 1.) beam_min_sigma and beam_max_sigma are global floats
|
||||
// containing the desired minimum and maximum beam standard
|
||||
// deviations, for dim and bright colors respectively.
|
||||
// 2.) beam_max_sigma must be > 0.0
|
||||
// 3.) beam_min_sigma must be in (0.0, beam_max_sigma]
|
||||
// 4.) beam_spot_power must be defined as a global float.
|
||||
// Parameters:
|
||||
// 1.) color is the underlying source color along a scanline
|
||||
// 2.) sigma_range = beam_max_sigma - beam_min_sigma; we take
|
||||
// sigma_range as a parameter to avoid repeated computation
|
||||
// when beam_{min, max}_sigma are runtime shader parameters
|
||||
// Optional: Users may set beam_spot_shape_function to 1 to define the
|
||||
// inner f(color) subfunction (see below) as:
|
||||
// f(color) = sqrt(1.0 - (color - 1.0)*(color - 1.0))
|
||||
// Otherwise (technically, if beam_spot_shape_function < 0.5):
|
||||
// f(color) = pow(color, beam_spot_power)
|
||||
// Returns: The standard deviation of the Gaussian beam for "color:"
|
||||
// sigma = beam_min_sigma + sigma_range * f(color)
|
||||
// Details/Discussion:
|
||||
// The beam's spot shape vaguely resembles an aspect-corrected f() in the
|
||||
// range [0, 1] (not quite, but it's related). f(color) = color makes
|
||||
// spots look like diamonds, and a spherical function or cube balances
|
||||
// between variable width and a soft/realistic shape. A beam_spot_power
|
||||
// > 1.0 can produce an ugly spot shape and more initial clipping, but the
|
||||
// final shape also differs based on the horizontal resampling filter and
|
||||
// the phosphor bloom. For instance, resampling horizontally in nonlinear
|
||||
// light and/or with a sharp (e.g. Lanczos) filter will sharpen the spot
|
||||
// shape, but a sixth root is still quite soft. A power function (default
|
||||
// 1.0/3.0 beam_spot_power) is most flexible, but a fixed spherical curve
|
||||
// has the highest variability without an awful spot shape.
|
||||
//
|
||||
// beam_min_sigma affects scanline sharpness/aliasing in dim areas, and its
|
||||
// difference from beam_max_sigma affects beam width variability. It only
|
||||
// affects clipping [for pure Gaussians] if beam_spot_power > 1.0 (which is
|
||||
// a conservative estimate for a more complex constraint).
|
||||
//
|
||||
// beam_max_sigma affects clipping and increasing scanline width/softness
|
||||
// as color increases. The wider this is, the more scanlines need to be
|
||||
// evaluated to avoid distortion. For a pure Gaussian, the max_beam_sigma
|
||||
// at which the first unused scanline always has a weight < 1.0/255.0 is:
|
||||
// num scanlines = 2, max_beam_sigma = 0.2089; distortions begin ~0.34
|
||||
// num scanlines = 3, max_beam_sigma = 0.3879; distortions begin ~0.52
|
||||
// num scanlines = 4, max_beam_sigma = 0.5723; distortions begin ~0.70
|
||||
// num scanlines = 5, max_beam_sigma = 0.7591; distortions begin ~0.89
|
||||
// num scanlines = 6, max_beam_sigma = 0.9483; distortions begin ~1.08
|
||||
// Generalized Gaussians permit more leeway here as steepness increases.
|
||||
if(beam_spot_shape_function < 0.5)
|
||||
{
|
||||
// Use a power function:
|
||||
return beam_min_sigma.xxx + sigma_range *
|
||||
pow(color, beam_spot_power);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Use a spherical function:
|
||||
const float3 color_minus_1 = color - 1.0.xxx;
|
||||
return beam_min_sigma.xxx + sigma_range *
|
||||
sqrt(1.0.xxx - color_minus_1*color_minus_1);
|
||||
}
|
||||
}
|
||||
|
||||
float3 get_generalized_gaussian_beta(const float3 color,
|
||||
const float shape_range)
|
||||
{
|
||||
// Requires: Globals:
|
||||
// 1.) beam_min_shape and beam_max_shape are global floats
|
||||
// containing the desired min/max generalized Gaussian
|
||||
// beta parameters, for dim and bright colors respectively.
|
||||
// 2.) beam_max_shape must be >= 2.0
|
||||
// 3.) beam_min_shape must be in [2.0, beam_max_shape]
|
||||
// 4.) beam_shape_power must be defined as a global float.
|
||||
// Parameters:
|
||||
// 1.) color is the underlying source color along a scanline
|
||||
// 2.) shape_range = beam_max_shape - beam_min_shape; we take
|
||||
// shape_range as a parameter to avoid repeated computation
|
||||
// when beam_{min, max}_shape are runtime shader parameters
|
||||
// Returns: The type-I generalized Gaussian "shape" parameter beta for
|
||||
// the given color.
|
||||
// Details/Discussion:
|
||||
// Beta affects the scanline distribution as follows:
|
||||
// a.) beta < 2.0 narrows the peak to a spike with a discontinuous slope
|
||||
// b.) beta == 2.0 just degenerates to a Gaussian
|
||||
// c.) beta > 2.0 flattens and widens the peak, then drops off more steeply
|
||||
// than a Gaussian. Whereas high sigmas widen and soften peaks, high
|
||||
// beta widen and sharpen peaks at the risk of aliasing.
|
||||
// Unlike high beam_spot_powers, high beam_shape_powers actually soften shape
|
||||
// transitions, whereas lower ones sharpen them (at the risk of aliasing).
|
||||
return beam_min_shape + shape_range * pow(color, beam_shape_power);
|
||||
}
|
||||
|
||||
float3 scanline_gaussian_integral_contrib(const float3 dist,
|
||||
const float3 color, const float pixel_height, const float sigma_range)
|
||||
{
|
||||
// Requires: 1.) dist is the distance of the [potentially separate R/G/B]
|
||||
// point(s) from a scanline in units of scanlines, where
|
||||
// 1.0 means the sample point straddles the next scanline.
|
||||
// 2.) color is the underlying source color along a scanline.
|
||||
// 3.) pixel_height is the output pixel height in scanlines.
|
||||
// 4.) Requirements of get_gaussian_sigma() must be met.
|
||||
// Returns: Return a scanline's light output over a given pixel.
|
||||
// Details:
|
||||
// The CRT beam profile follows a roughly Gaussian distribution which is
|
||||
// wider for bright colors than dark ones. The integral over the full
|
||||
// range of a Gaussian function is always 1.0, so we can vary the beam
|
||||
// with a standard deviation without affecting brightness. 'x' = distance:
|
||||
// gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
|
||||
// gaussian integral = 0.5 (1.0 + erf(x/(sigma * sqrt(2))))
|
||||
// Use a numerical approximation of the "error function" (the Gaussian
|
||||
// indefinite integral) to find the definite integral of the scanline's
|
||||
// average brightness over a given pixel area. Even if curved coords were
|
||||
// used in this pass, a flat scalar pixel height works almost as well as a
|
||||
// pixel height computed from a full pixel-space to scanline-space matrix.
|
||||
const float3 sigma = get_gaussian_sigma(color, sigma_range);
|
||||
const float3 ph_offset = (pixel_height.xxx) * 0.5;
|
||||
const float3 denom_inv = 1.0/(sigma*sqrt(2.0));
|
||||
const float3 integral_high = erf((dist + ph_offset)*denom_inv);
|
||||
const float3 integral_low = erf((dist - ph_offset)*denom_inv);
|
||||
return color * 0.5*(integral_high - integral_low)/pixel_height;
|
||||
}
|
||||
|
||||
float3 scanline_generalized_gaussian_integral_contrib(const float3 dist,
|
||||
const float3 color, const float pixel_height, const float sigma_range,
|
||||
const float shape_range)
|
||||
{
|
||||
// Requires: 1.) Requirements of scanline_gaussian_integral_contrib()
|
||||
// must be met.
|
||||
// 2.) Requirements of get_gaussian_sigma() must be met.
|
||||
// 3.) Requirements of get_generalized_gaussian_beta() must be
|
||||
// met.
|
||||
// Returns: Return a scanline's light output over a given pixel.
|
||||
// A generalized Gaussian distribution allows the shape (beta) to vary
|
||||
// as well as the width (alpha). "gamma" refers to the gamma function:
|
||||
// generalized sample =
|
||||
// beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
|
||||
// ligamma(s, z) is the lower incomplete gamma function, for which we only
|
||||
// implement two of four branches (because we keep 1/beta <= 0.5):
|
||||
// generalized integral = 0.5 + 0.5* sign(x) *
|
||||
// ligamma(1/beta, (|x|/alpha)**beta)/gamma(1/beta)
|
||||
// See get_generalized_gaussian_beta() for a discussion of beta.
|
||||
// We base alpha on the intended Gaussian sigma, but it only strictly
|
||||
// models models standard deviation at beta == 2, because the standard
|
||||
// deviation depends on both alpha and beta (keeping alpha independent is
|
||||
// faster and preserves intuitive behavior and a full spectrum of results).
|
||||
const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
|
||||
const float3 beta = get_generalized_gaussian_beta(color, shape_range);
|
||||
const float3 alpha_inv = 1.0.xxx/alpha;
|
||||
const float3 s = 1.0.xxx/beta;
|
||||
const float3 ph_offset = (pixel_height.xxx) * 0.5;
|
||||
// Pass beta to gamma_impl to avoid repeated divides. Similarly pass
|
||||
// beta (i.e. 1/s) and 1/gamma(s) to normalized_ligamma_impl.
|
||||
const float3 gamma_s_inv = 1.0.xxx/gamma_impl(s, beta);
|
||||
const float3 dist1 = dist + ph_offset;
|
||||
const float3 dist0 = dist - ph_offset;
|
||||
const float3 integral_high = sign(dist1) * normalized_ligamma_impl(
|
||||
s, pow(abs(dist1)*alpha_inv, beta), beta, gamma_s_inv);
|
||||
const float3 integral_low = sign(dist0) * normalized_ligamma_impl(
|
||||
s, pow(abs(dist0)*alpha_inv, beta), beta, gamma_s_inv);
|
||||
return color * 0.5*(integral_high - integral_low)/pixel_height;
|
||||
}
|
||||
|
||||
float3 scanline_gaussian_sampled_contrib(const float3 dist, const float3 color,
|
||||
const float pixel_height, const float sigma_range)
|
||||
{
|
||||
// See scanline_gaussian integral_contrib() for detailed comments!
|
||||
// gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
|
||||
const float3 sigma = get_gaussian_sigma(color, sigma_range);
|
||||
// Avoid repeated divides:
|
||||
const float3 sigma_inv = 1.0.xxx/sigma;
|
||||
const float3 inner_denom_inv = 0.5 * sigma_inv * sigma_inv;
|
||||
const float3 outer_denom_inv = sigma_inv/sqrt(2.0*pi);
|
||||
if(beam_antialias_level > 0.5)
|
||||
{
|
||||
// Sample 1/3 pixel away in each direction as well:
|
||||
const float3 sample_offset = pixel_height.xxx/3.0;
|
||||
const float3 dist2 = dist + sample_offset;
|
||||
const float3 dist3 = abs(dist - sample_offset);
|
||||
// Average three pure Gaussian samples:
|
||||
const float3 scale = color/3.0 * outer_denom_inv;
|
||||
const float3 weight1 = exp(-(dist*dist)*inner_denom_inv);
|
||||
const float3 weight2 = exp(-(dist2*dist2)*inner_denom_inv);
|
||||
const float3 weight3 = exp(-(dist3*dist3)*inner_denom_inv);
|
||||
return scale * (weight1 + weight2 + weight3);
|
||||
}
|
||||
else
|
||||
{
|
||||
return color*exp(-(dist*dist)*inner_denom_inv)*outer_denom_inv;
|
||||
}
|
||||
}
|
||||
|
||||
float3 scanline_generalized_gaussian_sampled_contrib(const float3 dist,
|
||||
const float3 color, const float pixel_height, const float sigma_range,
|
||||
const float shape_range)
|
||||
{
|
||||
// See scanline_generalized_gaussian_integral_contrib() for details!
|
||||
// generalized sample =
|
||||
// beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
|
||||
const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
|
||||
const float3 beta = get_generalized_gaussian_beta(color, shape_range);
|
||||
// Avoid repeated divides:
|
||||
const float3 alpha_inv = 1.0.xxx/alpha;
|
||||
const float3 beta_inv = 1.0.xxx/beta;
|
||||
const float3 scale = color * beta * 0.5 * alpha_inv /
|
||||
gamma_impl(beta_inv, beta);
|
||||
if(beam_antialias_level > 0.5)
|
||||
{
|
||||
// Sample 1/3 pixel closer to and farther from the scanline too.
|
||||
const float3 sample_offset = pixel_height.xxx/3.0;
|
||||
const float3 dist2 = dist + sample_offset;
|
||||
const float3 dist3 = abs(dist - sample_offset);
|
||||
// Average three generalized Gaussian samples:
|
||||
const float3 weight1 = exp(-pow(abs(dist*alpha_inv), beta));
|
||||
const float3 weight2 = exp(-pow(abs(dist2*alpha_inv), beta));
|
||||
const float3 weight3 = exp(-pow(abs(dist3*alpha_inv), beta));
|
||||
return scale/3.0 * (weight1 + weight2 + weight3);
|
||||
}
|
||||
else
|
||||
{
|
||||
return scale * exp(-pow(abs(dist*alpha_inv), beta));
|
||||
}
|
||||
}
|
||||
|
||||
float3 scanline_contrib(float3 dist, float3 color,
|
||||
float pixel_height, const float sigma_range, const float shape_range)
|
||||
{
|
||||
// Requires: 1.) Requirements of scanline_gaussian_integral_contrib()
|
||||
// must be met.
|
||||
// 2.) Requirements of get_gaussian_sigma() must be met.
|
||||
// 3.) Requirements of get_generalized_gaussian_beta() must be
|
||||
// met.
|
||||
// Returns: Return a scanline's light output over a given pixel, using
|
||||
// a generalized or pure Gaussian distribution and sampling or
|
||||
// integrals as desired by user codepath choices.
|
||||
if(beam_generalized_gaussian)
|
||||
{
|
||||
if(beam_antialias_level > 1.5)
|
||||
{
|
||||
return scanline_generalized_gaussian_integral_contrib(
|
||||
dist, color, pixel_height, sigma_range, shape_range);
|
||||
}
|
||||
else
|
||||
{
|
||||
return scanline_generalized_gaussian_sampled_contrib(
|
||||
dist, color, pixel_height, sigma_range, shape_range);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if(beam_antialias_level > 1.5)
|
||||
{
|
||||
return scanline_gaussian_integral_contrib(
|
||||
dist, color, pixel_height, sigma_range);
|
||||
}
|
||||
else
|
||||
{
|
||||
return scanline_gaussian_sampled_contrib(
|
||||
dist, color, pixel_height, sigma_range);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float3 get_raw_interpolated_color(const float3 color0,
|
||||
const float3 color1, const float3 color2, const float3 color3,
|
||||
const float4 weights)
|
||||
{
|
||||
// Use max to avoid bizarre artifacts from negative colors:
|
||||
return max(mul(weights, float4x3(color0, color1, color2, color3)), 0.0);
|
||||
}
|
||||
|
||||
float3 get_interpolated_linear_color(const float3 color0, const float3 color1,
|
||||
const float3 color2, const float3 color3, const float4 weights)
|
||||
{
|
||||
// Requires: 1.) Requirements of include/gamma-management.h must be met:
|
||||
// intermediate_gamma must be globally defined, and input
|
||||
// colors are interpreted as linear RGB unless you #define
|
||||
// GAMMA_ENCODE_EVERY_FBO (in which case they are
|
||||
// interpreted as gamma-encoded with intermediate_gamma).
|
||||
// 2.) color0-3 are colors sampled from a texture with tex2D().
|
||||
// They are interpreted as defined in requirement 1.
|
||||
// 3.) weights contains weights for each color, summing to 1.0.
|
||||
// 4.) beam_horiz_linear_rgb_weight must be defined as a global
|
||||
// float in [0.0, 1.0] describing how much blending should
|
||||
// be done in linear RGB (rest is gamma-corrected RGB).
|
||||
// 5.) RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE must be #defined
|
||||
// if beam_horiz_linear_rgb_weight is anything other than a
|
||||
// static constant, or we may try branching at runtime
|
||||
// without dynamic branches allowed (slow).
|
||||
// Returns: Return an interpolated color lookup between the four input
|
||||
// colors based on the weights in weights. The final color will
|
||||
// be a linear RGB value, but the blending will be done as
|
||||
// indicated above.
|
||||
const float intermediate_gamma = get_intermediate_gamma();
|
||||
// Branch if beam_horiz_linear_rgb_weight is static (for free) or if the
|
||||
// profile allows dynamic branches (faster than computing extra pows):
|
||||
#ifndef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
#define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
|
||||
#else
|
||||
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
#define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
|
||||
#endif
|
||||
#endif
|
||||
#ifdef SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
|
||||
// beam_horiz_linear_rgb_weight is static, so we can branch:
|
||||
#ifdef GAMMA_ENCODE_EVERY_FBO
|
||||
const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
|
||||
color0, color1, color2, color3, weights), intermediate_gamma);
|
||||
if(beam_horiz_linear_rgb_weight > 0.0)
|
||||
{
|
||||
const float3 linear_mixed_color = get_raw_interpolated_color(
|
||||
pow(color0, intermediate_gamma),
|
||||
pow(color1, intermediate_gamma),
|
||||
pow(color2, intermediate_gamma),
|
||||
pow(color3, intermediate_gamma),
|
||||
weights);
|
||||
return lerp(gamma_mixed_color, linear_mixed_color,
|
||||
beam_horiz_linear_rgb_weight);
|
||||
}
|
||||
else
|
||||
{
|
||||
return gamma_mixed_color;
|
||||
}
|
||||
#else
|
||||
const float3 linear_mixed_color = get_raw_interpolated_color(
|
||||
color0, color1, color2, color3, weights);
|
||||
if(beam_horiz_linear_rgb_weight < 1.0)
|
||||
{
|
||||
const float3 gamma_mixed_color = get_raw_interpolated_color(
|
||||
pow(color0, 1.0/intermediate_gamma),
|
||||
pow(color1, 1.0/intermediate_gamma),
|
||||
pow(color2, 1.0/intermediate_gamma),
|
||||
pow(color3, 1.0/intermediate_gamma),
|
||||
weights);
|
||||
return lerp(gamma_mixed_color, linear_mixed_color,
|
||||
beam_horiz_linear_rgb_weight);
|
||||
}
|
||||
else
|
||||
{
|
||||
return linear_mixed_color;
|
||||
}
|
||||
#endif // GAMMA_ENCODE_EVERY_FBO
|
||||
#else
|
||||
#ifdef GAMMA_ENCODE_EVERY_FBO
|
||||
// Inputs: color0-3 are colors in gamma-encoded RGB.
|
||||
const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
|
||||
color0, color1, color2, color3, weights), intermediate_gamma);
|
||||
const float3 linear_mixed_color = get_raw_interpolated_color(
|
||||
pow(color0, intermediate_gamma),
|
||||
pow(color1, intermediate_gamma),
|
||||
pow(color2, intermediate_gamma),
|
||||
pow(color3, intermediate_gamma),
|
||||
weights);
|
||||
return lerp(gamma_mixed_color, linear_mixed_color,
|
||||
beam_horiz_linear_rgb_weight);
|
||||
#else
|
||||
// Inputs: color0-3 are colors in linear RGB.
|
||||
const float3 linear_mixed_color = get_raw_interpolated_color(
|
||||
color0, color1, color2, color3, weights);
|
||||
const float3 gamma_mixed_color = get_raw_interpolated_color(
|
||||
pow(color0, 1.0/intermediate_gamma),
|
||||
pow(color1, 1.0/intermediate_gamma),
|
||||
pow(color2, 1.0/intermediate_gamma),
|
||||
pow(color3, 1.0/intermediate_gamma),
|
||||
weights);
|
||||
return lerp(gamma_mixed_color, linear_mixed_color,
|
||||
beam_horiz_linear_rgb_weight);
|
||||
#endif // GAMMA_ENCODE_EVERY_FBO
|
||||
#endif // SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
|
||||
}
|
||||
|
||||
float3 get_scanline_color(const sampler2D Source, const float2 scanline_uv,
|
||||
const float2 uv_step_x, const float4 weights)
|
||||
{
|
||||
// Requires: 1.) scanline_uv must be vertically snapped to the caller's
|
||||
// desired line or scanline and horizontally snapped to the
|
||||
// texel just left of the output pixel (color1)
|
||||
// 2.) uv_step_x must contain the horizontal uv distance
|
||||
// between texels.
|
||||
// 3.) weights must contain interpolation filter weights for
|
||||
// color0, color1, color2, and color3, where color1 is just
|
||||
// left of the output pixel.
|
||||
// Returns: Return a horizontally interpolated texture lookup using 2-4
|
||||
// nearby texels, according to weights and the conventions of
|
||||
// get_interpolated_linear_color().
|
||||
// We can ignore the outside texture lookups for Quilez resampling.
|
||||
const float3 color1 = tex2D(Source, scanline_uv).rgb;
|
||||
const float3 color2 = tex2D(Source, scanline_uv + uv_step_x).rgb;
|
||||
float3 color0 = 0.0.xxx;
|
||||
float3 color3 = 0.0.xxx;
|
||||
if(beam_horiz_filter > 0.5)
|
||||
{
|
||||
color0 = tex2D(Source, scanline_uv - uv_step_x).rgb;
|
||||
color3 = tex2D(Source, scanline_uv + 2.0 * uv_step_x).rgb;
|
||||
}
|
||||
// Sample the texture as-is, whether it's linear or gamma-encoded:
|
||||
// get_interpolated_linear_color() will handle the difference.
|
||||
return get_interpolated_linear_color(color0, color1, color2, color3, weights);
|
||||
}
|
||||
|
||||
float3 sample_single_scanline_horizontal(const sampler2D Source,
|
||||
const float2 tex_uv, const float2 texture_size,
|
||||
const float2 texture_size_inv)
|
||||
{
|
||||
// TODO: Add function requirements.
|
||||
// Snap to the previous texel and get sample dists from 2/4 nearby texels:
|
||||
const float2 curr_texel = tex_uv * texture_size;
|
||||
// Use under_half to fix a rounding bug right around exact texel locations.
|
||||
const float2 prev_texel =
|
||||
floor(curr_texel - under_half.xx) + 0.5.xx;
|
||||
const float2 prev_texel_hor = float2(prev_texel.x, curr_texel.y);
|
||||
const float2 prev_texel_hor_uv = prev_texel_hor * texture_size_inv;
|
||||
const float prev_dist = curr_texel.x - prev_texel_hor.x;
|
||||
const float4 sample_dists = float4(1.0 + prev_dist, prev_dist,
|
||||
1.0 - prev_dist, 2.0 - prev_dist);
|
||||
// Get Quilez, Lanczos2, or Gaussian resize weights for 2/4 nearby texels:
|
||||
float4 weights;
|
||||
if(beam_horiz_filter < 0.5)
|
||||
{
|
||||
// Quilez:
|
||||
const float x = sample_dists.y;
|
||||
const float w2 = x*x*x*(x*(x*6.0 - 15.0) + 10.0);
|
||||
weights = float4(0.0, 1.0 - w2, w2, 0.0);
|
||||
}
|
||||
else if(beam_horiz_filter < 1.5)
|
||||
{
|
||||
// Gaussian:
|
||||
float inner_denom_inv = 1.0/(2.0*beam_horiz_sigma*beam_horiz_sigma);
|
||||
weights = exp(-(sample_dists*sample_dists)*inner_denom_inv);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Lanczos2:
|
||||
const float4 pi_dists = FIX_ZERO(sample_dists * pi);
|
||||
weights = 2.0 * sin(pi_dists) * sin(pi_dists * 0.5) /
|
||||
(pi_dists * pi_dists);
|
||||
}
|
||||
// Ensure the weight sum == 1.0:
|
||||
const float4 final_weights = weights/dot(weights, 1.0.xxxx);
|
||||
// Get the interpolated horizontal scanline color:
|
||||
const float2 uv_step_x = float2(texture_size_inv.x, 0.0);
|
||||
return get_scanline_color(
|
||||
Source, prev_texel_hor_uv, uv_step_x, final_weights);
|
||||
}
|
||||
|
||||
float3 sample_rgb_scanline_horizontal(const sampler2D Source,
|
||||
const float2 tex_uv, const float2 texture_size,
|
||||
const float2 texture_size_inv)
|
||||
{
|
||||
// TODO: Add function requirements.
|
||||
// Rely on a helper to make convergence easier.
|
||||
if(beam_misconvergence)
|
||||
{
|
||||
const float3 convergence_offsets_rgb =
|
||||
get_convergence_offsets_x_vector();
|
||||
const float3 offset_u_rgb =
|
||||
convergence_offsets_rgb * texture_size_inv.xxx;
|
||||
const float2 scanline_uv_r = tex_uv - float2(offset_u_rgb.r, 0.0);
|
||||
const float2 scanline_uv_g = tex_uv - float2(offset_u_rgb.g, 0.0);
|
||||
const float2 scanline_uv_b = tex_uv - float2(offset_u_rgb.b, 0.0);
|
||||
const float3 sample_r = sample_single_scanline_horizontal(
|
||||
Source, scanline_uv_r, texture_size, texture_size_inv);
|
||||
const float3 sample_g = sample_single_scanline_horizontal(
|
||||
Source, scanline_uv_g, texture_size, texture_size_inv);
|
||||
const float3 sample_b = sample_single_scanline_horizontal(
|
||||
Source, scanline_uv_b, texture_size, texture_size_inv);
|
||||
return float3(sample_r.r, sample_g.g, sample_b.b);
|
||||
}
|
||||
else
|
||||
{
|
||||
return sample_single_scanline_horizontal(Source, tex_uv, texture_size,
|
||||
texture_size_inv);
|
||||
}
|
||||
}
|
||||
|
||||
float2 get_last_scanline_uv(const float2 tex_uv, const float2 texture_size,
|
||||
const float2 texture_size_inv, const float2 il_step_multiple,
|
||||
const float frame_count, out float dist)
|
||||
{
|
||||
// Compute texture coords for the last/upper scanline, accounting for
|
||||
// interlacing: With interlacing, only consider even/odd scanlines every
|
||||
// other frame. Top-field first (TFF) order puts even scanlines on even
|
||||
// frames, and BFF order puts them on odd frames. Texels are centered at:
|
||||
// frac(tex_uv * texture_size) == x.5
|
||||
// Caution: If these coordinates ever seem incorrect, first make sure it's
|
||||
// not because anisotropic filtering is blurring across field boundaries.
|
||||
// Note: TFF/BFF won't matter for sources that double-weave or similar.
|
||||
const float field_offset = floor(il_step_multiple.y * 0.75) *
|
||||
fmod(frame_count + float(interlace_bff), 2.0);
|
||||
const float2 curr_texel = tex_uv * texture_size;
|
||||
// Use under_half to fix a rounding bug right around exact texel locations.
|
||||
// This causes an insane bug on duckstation, so it's disabled here. (Hyllian, 2024)
|
||||
// const float2 prev_texel_num = floor(curr_texel - under_half.xx);
|
||||
const float2 prev_texel_num = curr_texel;
|
||||
const float wrong_field = fmod(
|
||||
prev_texel_num.y + field_offset, il_step_multiple.y);
|
||||
const float2 scanline_texel_num = prev_texel_num - float2(0.0, wrong_field);
|
||||
// Snap to the center of the previous scanline in the current field:
|
||||
const float2 scanline_texel = scanline_texel_num + 0.5.xx;
|
||||
const float2 scanline_uv = scanline_texel * texture_size_inv;
|
||||
// Save the sample's distance from the scanline, in units of scanlines:
|
||||
dist = (curr_texel.y - scanline_texel.y)/il_step_multiple.y;
|
||||
return scanline_uv;
|
||||
}
|
||||
|
||||
bool is_interlaced(float num_lines)
|
||||
{
|
||||
// Detect interlacing based on the number of lines in the source.
|
||||
if(interlace_detect)
|
||||
{
|
||||
// NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field
|
||||
// NTSC Emulators: Typically 224 or 240 lines
|
||||
// PAL: 625 lines, 312.5/field; 576 active (typical), 288/field
|
||||
// PAL Emulators: ?
|
||||
// ATSC: 720p, 1080i, 1080p
|
||||
// Where do we place our cutoffs? Assumptions:
|
||||
// 1.) We only need to care about active lines.
|
||||
// 2.) Anything > 288 and <= 576 lines is probably interlaced.
|
||||
// 3.) Anything > 576 lines is probably not interlaced...
|
||||
// 4.) ...except 1080 lines, which is a crapshoot (user decision).
|
||||
// 5.) Just in case the main program uses calculated video sizes,
|
||||
// we should nudge the float thresholds a bit.
|
||||
const bool sd_interlace = ((num_lines > 288.5) && (num_lines < 576.5));
|
||||
const bool hd_interlace = interlace_1080i ?
|
||||
((num_lines > 1079.5) && (num_lines < 1080.5)) :
|
||||
false;
|
||||
return (sd_interlace || hd_interlace);
|
||||
}
|
||||
else
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif // SCANLINE_FUNCTIONS_H
|
||||
|
|
@ -0,0 +1,498 @@
|
|||
#ifndef SPECIAL_FUNCTIONS_H
|
||||
#define SPECIAL_FUNCTIONS_H
|
||||
|
||||
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||||
|
||||
// Copyright (C) 2014 TroggleMonkey
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to
|
||||
// deal in the Software without restriction, including without limitation the
|
||||
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
// sell copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
// IN THE SOFTWARE.
|
||||
|
||||
|
||||
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
||||
|
||||
// This file implements the following mathematical special functions:
|
||||
// 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
|
||||
// 2.) gamma(s), a real-numbered extension of the integer factorial function
|
||||
// It also implements normalized_ligamma(s, z), a normalized lower incomplete
|
||||
// gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can
|
||||
// be called with an _impl suffix to use an implementation version with a few
|
||||
// extra precomputed parameters (which may be useful for the caller to reuse).
|
||||
// See below for details.
|
||||
//
|
||||
// Design Rationale:
|
||||
// Pretty much every line of code in this file is duplicated four times for
|
||||
// different input types (float4/float3/float2/float). This is unfortunate,
|
||||
// but Cg doesn't allow function templates. Macros would be far less verbose,
|
||||
// but they would make the code harder to document and read. I don't expect
|
||||
// these functions will require a whole lot of maintenance changes unless
|
||||
// someone ever has need for more robust incomplete gamma functions, so code
|
||||
// duplication seems to be the lesser evil in this case.
|
||||
|
||||
|
||||
/////////////////////////// GAUSSIAN ERROR FUNCTION //////////////////////////
|
||||
|
||||
float4 erf6(float4 x)
|
||||
{
|
||||
// Requires: x is the standard parameter to erf().
|
||||
// Returns: Return an Abramowitz/Stegun approximation of erf(), where:
|
||||
// erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
|
||||
// This approximation has a max absolute error of 2.5*10**-5
|
||||
// with solid numerical robustness and efficiency. See:
|
||||
// https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
|
||||
static const float4 one = 1.0.xxxx;
|
||||
const float4 sign_x = sign(x);
|
||||
const float4 t = one/(one + 0.47047*abs(x));
|
||||
const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
|
||||
exp(-(x*x));
|
||||
return result * sign_x;
|
||||
}
|
||||
|
||||
float3 erf6(const float3 x)
|
||||
{
|
||||
// Float3 version:
|
||||
static const float3 one = 1.0.xxx;
|
||||
const float3 sign_x = sign(x);
|
||||
const float3 t = one/(one + 0.47047*abs(x));
|
||||
const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
|
||||
exp(-(x*x));
|
||||
return result * sign_x;
|
||||
}
|
||||
|
||||
float2 erf6(const float2 x)
|
||||
{
|
||||
// Float2 version:
|
||||
static const float2 one = 1.0.xx;
|
||||
const float2 sign_x = sign(x);
|
||||
const float2 t = one/(one + 0.47047*abs(x));
|
||||
const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
|
||||
exp(-(x*x));
|
||||
return result * sign_x;
|
||||
}
|
||||
|
||||
float erf6(const float x)
|
||||
{
|
||||
// Float version:
|
||||
const float sign_x = sign(x);
|
||||
const float t = 1.0/(1.0 + 0.47047*abs(x));
|
||||
const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
|
||||
exp(-(x*x));
|
||||
return result * sign_x;
|
||||
}
|
||||
|
||||
float4 erft(const float4 x)
|
||||
{
|
||||
// Requires: x is the standard parameter to erf().
|
||||
// Returns: Approximate erf() with the hyperbolic tangent. The error is
|
||||
// visually noticeable, but it's blazing fast and perceptually
|
||||
// close...at least on ATI hardware. See:
|
||||
// http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
|
||||
// Warning: Only use this if your hardware drivers correctly implement
|
||||
// tanh(): My nVidia 8800GTS returns garbage output.
|
||||
return tanh(1.202760580 * x);
|
||||
}
|
||||
|
||||
float3 erft(const float3 x)
|
||||
{
|
||||
// Float3 version:
|
||||
return tanh(1.202760580 * x);
|
||||
}
|
||||
|
||||
float2 erft(const float2 x)
|
||||
{
|
||||
// Float2 version:
|
||||
return tanh(1.202760580 * x);
|
||||
}
|
||||
|
||||
float erft(const float x)
|
||||
{
|
||||
// Float version:
|
||||
return tanh(1.202760580 * x);
|
||||
}
|
||||
|
||||
float4 erf(const float4 x)
|
||||
{
|
||||
// Requires: x is the standard parameter to erf().
|
||||
// Returns: Some approximation of erf(x), depending on user settings.
|
||||
#ifdef ERF_FAST_APPROXIMATION
|
||||
return erft(x);
|
||||
#else
|
||||
return erf6(x);
|
||||
#endif
|
||||
}
|
||||
|
||||
float3 erf(const float3 x)
|
||||
{
|
||||
// Float3 version:
|
||||
#ifdef ERF_FAST_APPROXIMATION
|
||||
return erft(x);
|
||||
#else
|
||||
return erf6(x);
|
||||
#endif
|
||||
}
|
||||
|
||||
float2 erf(const float2 x)
|
||||
{
|
||||
// Float2 version:
|
||||
#ifdef ERF_FAST_APPROXIMATION
|
||||
return erft(x);
|
||||
#else
|
||||
return erf6(x);
|
||||
#endif
|
||||
}
|
||||
|
||||
float erf(const float x)
|
||||
{
|
||||
// Float version:
|
||||
#ifdef ERF_FAST_APPROXIMATION
|
||||
return erft(x);
|
||||
#else
|
||||
return erf6(x);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////// COMPLETE GAMMA FUNCTION //////////////////////////
|
||||
|
||||
float4 gamma_impl(const float4 s, const float4 s_inv)
|
||||
{
|
||||
// Requires: 1.) s is the standard parameter to the gamma function, and
|
||||
// it should lie in the [0, 36] range.
|
||||
// 2.) s_inv = 1.0/s. This implementation function requires
|
||||
// the caller to precompute this value, giving users the
|
||||
// opportunity to reuse it.
|
||||
// Returns: Return approximate gamma function (real-numbered factorial)
|
||||
// output using the Lanczos approximation with two coefficients
|
||||
// calculated using Paul Godfrey's method here:
|
||||
// http://my.fit.edu/~gabdo/gamma.txt
|
||||
// An optimal g value for s in [0, 36] is ~1.12906830989, with
|
||||
// a maximum relative error of 0.000463 for 2**16 equally
|
||||
// evals. We could use three coeffs (0.0000346 error) without
|
||||
// hurting latency, but this allows more parallelism with
|
||||
// outside instructions.
|
||||
static const float4 g = 1.12906830989.xxxx;
|
||||
static const float4 c0 = 0.8109119309638332633713423362694399653724431.xxxx;
|
||||
static const float4 c1 = 0.4808354605142681877121661197951496120000040.xxxx;
|
||||
static const float4 e = 2.71828182845904523536028747135266249775724709.xxxx;
|
||||
const float4 sph = s + 0.5.xxxx;
|
||||
const float4 lanczos_sum = c0 + c1/(s + 1.0.xxxx);
|
||||
const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e
|
||||
// gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
|
||||
// This has less error for small s's than (s -= 1.0) at the beginning.
|
||||
return (pow(base, sph) * lanczos_sum) * s_inv;
|
||||
}
|
||||
|
||||
float3 gamma_impl(const float3 s, const float3 s_inv)
|
||||
{
|
||||
// Float3 version:
|
||||
static const float3 g = 1.12906830989.xxx;
|
||||
static const float3 c0 = 0.8109119309638332633713423362694399653724431.xxx;
|
||||
static const float3 c1 = 0.4808354605142681877121661197951496120000040.xxx;
|
||||
static const float3 e = 2.71828182845904523536028747135266249775724709.xxx;
|
||||
const float3 sph = s + 0.5.xxx;
|
||||
const float3 lanczos_sum = c0 + c1/(s + 1.0.xxx);
|
||||
const float3 base = (sph + g)/e;
|
||||
return (pow(base, sph) * lanczos_sum) * s_inv;
|
||||
}
|
||||
|
||||
float2 gamma_impl(const float2 s, const float2 s_inv)
|
||||
{
|
||||
// Float2 version:
|
||||
static const float2 g = 1.12906830989.xx;
|
||||
static const float2 c0 = 0.8109119309638332633713423362694399653724431.xx;
|
||||
static const float2 c1 = 0.4808354605142681877121661197951496120000040.xx;
|
||||
static const float2 e = 2.71828182845904523536028747135266249775724709.xx;
|
||||
const float2 sph = s + 0.5.xx;
|
||||
const float2 lanczos_sum = c0 + c1/(s + 1.0.xx);
|
||||
const float2 base = (sph + g)/e;
|
||||
return (pow(base, sph) * lanczos_sum) * s_inv;
|
||||
}
|
||||
|
||||
float gamma_impl(const float s, const float s_inv)
|
||||
{
|
||||
// Float version:
|
||||
static const float g = 1.12906830989;
|
||||
static const float c0 = 0.8109119309638332633713423362694399653724431;
|
||||
static const float c1 = 0.4808354605142681877121661197951496120000040;
|
||||
static const float e = 2.71828182845904523536028747135266249775724709;
|
||||
const float sph = s + 0.5;
|
||||
const float lanczos_sum = c0 + c1/(s + 1.0);
|
||||
const float base = (sph + g)/e;
|
||||
return (pow(base, sph) * lanczos_sum) * s_inv;
|
||||
}
|
||||
|
||||
float4 gamma(const float4 s)
|
||||
{
|
||||
// Requires: s is the standard parameter to the gamma function, and it
|
||||
// should lie in the [0, 36] range.
|
||||
// Returns: Return approximate gamma function output with a maximum
|
||||
// relative error of 0.000463. See gamma_impl for details.
|
||||
return gamma_impl(s, 1.0.xxxx/s);
|
||||
}
|
||||
|
||||
float3 gamma(const float3 s)
|
||||
{
|
||||
// Float3 version:
|
||||
return gamma_impl(s, 1.0.xxx/s);
|
||||
}
|
||||
|
||||
float2 gamma(const float2 s)
|
||||
{
|
||||
// Float2 version:
|
||||
return gamma_impl(s, 1.0.xx/s);
|
||||
}
|
||||
|
||||
float gamma(const float s)
|
||||
{
|
||||
// Float version:
|
||||
return gamma_impl(s, 1.0/s);
|
||||
}
|
||||
|
||||
|
||||
//////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) ///////////////
|
||||
|
||||
// Lower incomplete gamma function for small s and z (implementation):
|
||||
float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv)
|
||||
{
|
||||
// Requires: 1.) s < ~0.5
|
||||
// 2.) z <= ~0.775075
|
||||
// 3.) s_inv = 1.0/s (precomputed for outside reuse)
|
||||
// Returns: A series representation for the lower incomplete gamma
|
||||
// function for small s and small z (4 terms).
|
||||
// The actual "rolled up" summation looks like:
|
||||
// last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
|
||||
// sum = last_sign * last_pow / ((s + k) * last_factorial)
|
||||
// for(int i = 0; i < 4; ++i)
|
||||
// {
|
||||
// last_sign *= -1.0; last_pow *= z; last_factorial *= i;
|
||||
// sum += last_sign * last_pow / ((s + k) * last_factorial);
|
||||
// }
|
||||
// Unrolled, constant-unfolded and arranged for madds and parallelism:
|
||||
const float4 scale = pow(z, s);
|
||||
float4 sum = s_inv; // Summation iteration 0 result
|
||||
// Summation iterations 1, 2, and 3:
|
||||
const float4 z_sq = z*z;
|
||||
const float4 denom1 = s + 1.0.xxxx;
|
||||
const float4 denom2 = 2.0*s + 4.0.xxxx;
|
||||
const float4 denom3 = 6.0*s + 18.0.xxxx;
|
||||
//float4 denom4 = 24.0*s + float4(96.0);
|
||||
sum -= z/denom1;
|
||||
sum += z_sq/denom2;
|
||||
sum -= z * z_sq/denom3;
|
||||
//sum += z_sq * z_sq / denom4;
|
||||
// Scale and return:
|
||||
return scale * sum;
|
||||
}
|
||||
|
||||
float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv)
|
||||
{
|
||||
// Float3 version:
|
||||
const float3 scale = pow(z, s);
|
||||
float3 sum = s_inv;
|
||||
const float3 z_sq = z*z;
|
||||
const float3 denom1 = s + 1.0.xxx;
|
||||
const float3 denom2 = 2.0*s + 4.0.xxx;
|
||||
const float3 denom3 = 6.0*s + 18.0.xxx;
|
||||
sum -= z/denom1;
|
||||
sum += z_sq/denom2;
|
||||
sum -= z * z_sq/denom3;
|
||||
return scale * sum;
|
||||
}
|
||||
|
||||
float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv)
|
||||
{
|
||||
// Float2 version:
|
||||
const float2 scale = pow(z, s);
|
||||
float2 sum = s_inv;
|
||||
const float2 z_sq = z*z;
|
||||
const float2 denom1 = s + 1.0.xx;
|
||||
const float2 denom2 = 2.0*s + 4.0.xx;
|
||||
const float2 denom3 = 6.0*s + 18.0.xx;
|
||||
sum -= z/denom1;
|
||||
sum += z_sq/denom2;
|
||||
sum -= z * z_sq/denom3;
|
||||
return scale * sum;
|
||||
}
|
||||
|
||||
float ligamma_small_z_impl(const float s, const float z, const float s_inv)
|
||||
{
|
||||
// Float version:
|
||||
const float scale = pow(z, s);
|
||||
float sum = s_inv;
|
||||
const float z_sq = z*z;
|
||||
const float denom1 = s + 1.0;
|
||||
const float denom2 = 2.0*s + 4.0;
|
||||
const float denom3 = 6.0*s + 18.0;
|
||||
sum -= z/denom1;
|
||||
sum += z_sq/denom2;
|
||||
sum -= z * z_sq/denom3;
|
||||
return scale * sum;
|
||||
}
|
||||
|
||||
// Upper incomplete gamma function for small s and large z (implementation):
|
||||
float4 uigamma_large_z_impl(const float4 s, const float4 z)
|
||||
{
|
||||
// Requires: 1.) s < ~0.5
|
||||
// 2.) z > ~0.775075
|
||||
// Returns: Gauss's continued fraction representation for the upper
|
||||
// incomplete gamma function (4 terms).
|
||||
// The "rolled up" continued fraction looks like this. The denominator
|
||||
// is truncated, and it's calculated "from the bottom up:"
|
||||
// denom = float4('inf');
|
||||
// float4 one = float4(1.0);
|
||||
// for(int i = 4; i > 0; --i)
|
||||
// {
|
||||
// denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
|
||||
// }
|
||||
// Unrolled and constant-unfolded for madds and parallelism:
|
||||
const float4 numerator = pow(z, s) * exp(-z);
|
||||
float4 denom = 7.0.xxxx + z - s;
|
||||
denom = 5.0.xxxx + z - s + (3.0*s - 9.0.xxxx)/denom;
|
||||
denom = 3.0.xxxx + z - s + (2.0*s - 4.0.xxxx)/denom;
|
||||
denom = 1.0.xxxx + z - s + (s - 1.0.xxxx)/denom;
|
||||
return numerator / denom;
|
||||
}
|
||||
|
||||
float3 uigamma_large_z_impl(const float3 s, const float3 z)
|
||||
{
|
||||
// Float3 version:
|
||||
const float3 numerator = pow(z, s) * exp(-z);
|
||||
float3 denom = 7.0.xxx + z - s;
|
||||
denom = 5.0.xxx + z - s + (3.0*s - 9.0.xxx)/denom;
|
||||
denom = 3.0.xxx + z - s + (2.0*s - 4.0.xxx)/denom;
|
||||
denom = 1.0.xxx + z - s + (s - 1.0.xxx)/denom;
|
||||
return numerator / denom;
|
||||
}
|
||||
|
||||
float2 uigamma_large_z_impl(const float2 s, const float2 z)
|
||||
{
|
||||
// Float2 version:
|
||||
const float2 numerator = pow(z, s) * exp(-z);
|
||||
float2 denom = 7.0.xx + z - s;
|
||||
denom = 5.0.xx + z - s + (3.0*s - 9.0.xx)/denom;
|
||||
denom = 3.0.xx + z - s + (2.0*s - 4.0.xx)/denom;
|
||||
denom = 1.0.xx + z - s + (s - 1.0.xx)/denom;
|
||||
return numerator / denom;
|
||||
}
|
||||
|
||||
float uigamma_large_z_impl(const float s, const float z)
|
||||
{
|
||||
// Float version:
|
||||
const float numerator = pow(z, s) * exp(-z);
|
||||
float denom = 7.0 + z - s;
|
||||
denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
|
||||
denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
|
||||
denom = 1.0 + z - s + (s - 1.0)/denom;
|
||||
return numerator / denom;
|
||||
}
|
||||
|
||||
// Normalized lower incomplete gamma function for small s (implementation):
|
||||
float4 normalized_ligamma_impl(const float4 s, const float4 z,
|
||||
const float4 s_inv, const float4 gamma_s_inv)
|
||||
{
|
||||
// Requires: 1.) s < ~0.5
|
||||
// 2.) s_inv = 1/s (precomputed for outside reuse)
|
||||
// 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
|
||||
// Returns: Approximate the normalized lower incomplete gamma function
|
||||
// for s < 0.5. Since we only care about s < 0.5, we only need
|
||||
// to evaluate two branches (not four) based on z. Each branch
|
||||
// uses four terms, with a max relative error of ~0.00182. The
|
||||
// branch threshold and specifics were adapted for fewer terms
|
||||
// from Gil/Segura/Temme's paper here:
|
||||
// http://oai.cwi.nl/oai/asset/20433/20433B.pdf
|
||||
// Evaluate both branches: Real branches test slower even when available.
|
||||
static const float4 thresh = 0.775075.xxxx;
|
||||
const bool4 z_is_large = z > thresh;
|
||||
const float4 large_z = 1.0.xxxx - uigamma_large_z_impl(s, z) * gamma_s_inv;
|
||||
const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
|
||||
// Combine the results from both branches:
|
||||
return large_z * float4(z_is_large.xxxx) + small_z * float4(!z_is_large.xxxx);
|
||||
}
|
||||
|
||||
float3 normalized_ligamma_impl(const float3 s, const float3 z,
|
||||
const float3 s_inv, const float3 gamma_s_inv)
|
||||
{
|
||||
// Float3 version:
|
||||
static const float3 thresh = 0.775075.xxx;
|
||||
const bool3 z_is_large = z > thresh;
|
||||
const float3 large_z = 1.0.xxx - uigamma_large_z_impl(s, z) * gamma_s_inv;
|
||||
const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
|
||||
return large_z * float3(z_is_large.xxx) + small_z * float3(!z_is_large.xxx);
|
||||
}
|
||||
|
||||
float2 normalized_ligamma_impl(const float2 s, const float2 z,
|
||||
const float2 s_inv, const float2 gamma_s_inv)
|
||||
{
|
||||
// Float2 version:
|
||||
static const float2 thresh = 0.775075.xx;
|
||||
const bool2 z_is_large = z > thresh;
|
||||
const float2 large_z = 1.0.xx - uigamma_large_z_impl(s, z) * gamma_s_inv;
|
||||
const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
|
||||
return large_z * float2(z_is_large.xx) + small_z * float2(!z_is_large.xx);
|
||||
}
|
||||
|
||||
float normalized_ligamma_impl(const float s, const float z,
|
||||
const float s_inv, const float gamma_s_inv)
|
||||
{
|
||||
// Float version:
|
||||
static const float thresh = 0.775075;
|
||||
const bool z_is_large = z > thresh;
|
||||
const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
|
||||
const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
|
||||
return large_z * float(z_is_large) + small_z * float(!z_is_large);
|
||||
}
|
||||
|
||||
// Normalized lower incomplete gamma function for small s:
|
||||
float4 normalized_ligamma(const float4 s, const float4 z)
|
||||
{
|
||||
// Requires: s < ~0.5
|
||||
// Returns: Approximate the normalized lower incomplete gamma function
|
||||
// for s < 0.5. See normalized_ligamma_impl() for details.
|
||||
const float4 s_inv = 1.0.xxxx/s;
|
||||
const float4 gamma_s_inv = 1.0.xxxx/gamma_impl(s, s_inv);
|
||||
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
|
||||
}
|
||||
|
||||
float3 normalized_ligamma(const float3 s, const float3 z)
|
||||
{
|
||||
// Float3 version:
|
||||
const float3 s_inv = 1.0.xxx/s;
|
||||
const float3 gamma_s_inv = 1.0.xxx/gamma_impl(s, s_inv);
|
||||
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
|
||||
}
|
||||
|
||||
float2 normalized_ligamma(const float2 s, const float2 z)
|
||||
{
|
||||
// Float2 version:
|
||||
const float2 s_inv = 1.0.xx/s;
|
||||
const float2 gamma_s_inv = 1.0.xx/gamma_impl(s, s_inv);
|
||||
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
|
||||
}
|
||||
|
||||
float normalized_ligamma(const float s, const float z)
|
||||
{
|
||||
// Float version:
|
||||
const float s_inv = 1.0/s;
|
||||
const float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
|
||||
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
|
||||
}
|
||||
|
||||
|
||||
#endif // SPECIAL_FUNCTIONS_H
|
||||
|
||||
|
|
@ -0,0 +1,58 @@
|
|||
#ifndef USER_CGP_CONSTANTS_H
|
||||
#define USER_CGP_CONSTANTS_H
|
||||
|
||||
// IMPORTANT:
|
||||
// These constants MUST be set appropriately for the settings in crt-royale.cgp
|
||||
// (or whatever related .cgp file you're using). If they aren't, you're likely
|
||||
// to get artifacts, the wrong phosphor mask size, etc. I wish these could be
|
||||
// set directly in the .cgp file to make things easier, but...they can't.
|
||||
|
||||
// PASS SCALES AND RELATED CONSTANTS:
|
||||
// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
|
||||
// this shader: One does a viewport-scale bloom, and the other skips it. The
|
||||
// latter benefits from a higher bloom_approx_scale_x, so save both separately:
|
||||
static const float bloom_approx_size_x = 320.0;
|
||||
static const float bloom_approx_size_x_for_fake = 400.0;
|
||||
// Copy the viewport-relative scales of the phosphor mask resize passes
|
||||
// (MASK_RESIZE and the pass immediately preceding it):
|
||||
static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
|
||||
// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
|
||||
static const float geom_max_aspect_ratio = 4.0/3.0;
|
||||
|
||||
// PHOSPHOR MASK TEXTURE CONSTANTS:
|
||||
// Set the following constants to reflect the properties of the phosphor mask
|
||||
// texture named in crt-royale.cgp. The shader optionally resizes a mask tile
|
||||
// based on user settings, then repeats a single tile until filling the screen.
|
||||
// The shader must know the input texture size (default 64x64), and to manually
|
||||
// resize, it must also know the horizontal triads per tile (default 8).
|
||||
static const float2 mask_texture_small_size = 64.0.xx;
|
||||
static const float2 mask_texture_large_size = 512.0.xx;
|
||||
static const float mask_triads_per_tile = 8.0;
|
||||
// We need the average brightness of the phosphor mask to compensate for the
|
||||
// dimming it causes. The following four values are roughly correct for the
|
||||
// masks included with the shader. Update the value for any LUT texture you
|
||||
// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
|
||||
// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
|
||||
//#define PHOSPHOR_MASK_GRILLE14
|
||||
static const float mask_grille14_avg_color = 50.6666666/255.0;
|
||||
// TileableLinearApertureGrille14Wide7d33Spacing*.png
|
||||
// TileableLinearApertureGrille14Wide10And6Spacing*.png
|
||||
static const float mask_grille15_avg_color = 53.0/255.0;
|
||||
// TileableLinearApertureGrille15Wide6d33Spacing*.png
|
||||
// TileableLinearApertureGrille15Wide8And5d5Spacing*.png
|
||||
static const float mask_slot_avg_color = 46.0/255.0;
|
||||
// TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
|
||||
// TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
|
||||
static const float mask_shadow_avg_color = 41.0/255.0;
|
||||
// TileableLinearShadowMask*.png
|
||||
// TileableLinearShadowMaskEDP*.png
|
||||
|
||||
#ifdef PHOSPHOR_MASK_GRILLE14
|
||||
static const float mask_grille_avg_color = mask_grille14_avg_color;
|
||||
#else
|
||||
static const float mask_grille_avg_color = mask_grille15_avg_color;
|
||||
#endif
|
||||
|
||||
|
||||
#endif // USER_CGP_CONSTANTS_H
|
||||
|
|
@ -0,0 +1,359 @@
|
|||
#ifndef USER_SETTINGS_H
|
||||
#define USER_SETTINGS_H
|
||||
|
||||
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
||||
|
||||
// The Cg compiler uses different "profiles" with different capabilities.
|
||||
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
||||
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
||||
// or driver capabilities, so instead you must comment or uncomment the lines
|
||||
// below with "//" before "#define." Disable an option if you get compilation
|
||||
// errors resembling those listed. Generally speaking, all of these options
|
||||
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
||||
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
||||
|
||||
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
||||
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
||||
// with curved manually tiled phosphor mask coords. Related errors:
|
||||
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
||||
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
||||
//#define DRIVERS_ALLOW_DERIVATIVES
|
||||
|
||||
// Fine derivatives: Unsupported on older ATI cards.
|
||||
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
||||
// fast single-pass blur operations. If your card uses coarse derivatives and
|
||||
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
||||
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
||||
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
||||
#endif
|
||||
|
||||
// Dynamic looping: Requires an fp30 or newer profile.
|
||||
// This makes phosphor mask resampling faster in some cases. Related errors:
|
||||
// error C5013: profile does not support "for" statements and "for" could not
|
||||
// be unrolled
|
||||
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
||||
|
||||
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
||||
// Using one static loop avoids overhead if the user is right, but if the user
|
||||
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
||||
// binary search can potentially save some iterations. However, it may fail:
|
||||
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
||||
// needed to compile program
|
||||
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
||||
|
||||
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
||||
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
||||
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
||||
// this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DLOD
|
||||
|
||||
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
||||
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
||||
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
||||
// in this profile
|
||||
//#define DRIVERS_ALLOW_TEX2DBIAS
|
||||
|
||||
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
||||
// impose stricter limitations on register counts and instructions. Enable
|
||||
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
||||
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
||||
// to compile program.
|
||||
// Enabling integrated graphics compatibility mode will automatically disable:
|
||||
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
||||
// (This may be reenabled in a later release.)
|
||||
// 2.) RUNTIME_GEOMETRY_MODE
|
||||
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
||||
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
||||
|
||||
|
||||
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
||||
|
||||
// To disable a #define option, turn its line into a comment with "//."
|
||||
|
||||
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
||||
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
||||
// many of the options in this file and allow real-time tuning, but many of
|
||||
// them are slower. Disabling them and using this text file will boost FPS.
|
||||
#define RUNTIME_SHADER_PARAMS_ENABLE
|
||||
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
||||
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
||||
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
||||
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
||||
#define RUNTIME_ANTIALIAS_WEIGHTS
|
||||
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
||||
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
||||
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
||||
// parameters? This will require more math or dynamic branching.
|
||||
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
||||
// Specify the tilt at runtime? This makes things about 3% slower.
|
||||
#define RUNTIME_GEOMETRY_TILT
|
||||
// Specify the geometry mode at runtime?
|
||||
#define RUNTIME_GEOMETRY_MODE
|
||||
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
||||
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
||||
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
||||
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
||||
// removes the option to do so, but it may be faster without dynamic branches.
|
||||
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
||||
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
||||
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
||||
// detect the right blur if the triad size is static or our profile allows
|
||||
// dynamic branches, but otherwise we use the largest blur the user indicates
|
||||
// they might need:
|
||||
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
||||
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
||||
// Here's a helpful chart:
|
||||
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
||||
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
||||
|
||||
|
||||
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
||||
|
||||
// Note: Many of these static parameters are overridden by runtime shader
|
||||
// parameters when those are enabled. However, many others are static codepath
|
||||
// options that were cleaner or more convert to code as static constants.
|
||||
|
||||
// GAMMA:
|
||||
static const float crt_gamma_static = 2.5; // range [1, 5]
|
||||
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
||||
|
||||
// LEVELS MANAGEMENT:
|
||||
// Control the final multiplicative image contrast:
|
||||
static const float levels_contrast_static = 1.0; // range [0, 4)
|
||||
// We auto-dim to avoid clipping between passes and restore brightness
|
||||
// later. Control the dim factor here: Lower values clip less but crush
|
||||
// blacks more (static only for now).
|
||||
static const float levels_autodim_temp = 0.5; // range (0, 1]
|
||||
|
||||
// HALATION/DIFFUSION/BLOOM:
|
||||
// Halation weight: How much energy should be lost to electrons bounding
|
||||
// around under the CRT glass and exciting random phosphors?
|
||||
static const float halation_weight_static = 0.0; // range [0, 1]
|
||||
// Refractive diffusion weight: How much light should spread/diffuse from
|
||||
// refracting through the CRT glass?
|
||||
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
||||
// Underestimate brightness: Bright areas bloom more, but we can base the
|
||||
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
||||
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
||||
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
||||
// Blur all colors more than necessary for a softer phosphor bloom?
|
||||
static const float bloom_excess_static = 0.0; // range [0, 1]
|
||||
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
||||
// blurred resize of the input (convergence offsets are applied as well).
|
||||
// There are three filter options (static option only for now):
|
||||
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
||||
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
||||
// and beam_max_sigma is low.
|
||||
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
||||
// always uses a static sigma regardless of beam_max_sigma or
|
||||
// mask_num_triads_desired.
|
||||
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
||||
// These options are more pronounced for the fast, unbloomed shader version.
|
||||
static const float bloom_approx_filter_static = 2.0;
|
||||
|
||||
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
||||
// How many scanlines should contribute light to each pixel? Using more
|
||||
// scanlines is slower (especially for a generalized Gaussian) but less
|
||||
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
||||
// max_beam_sigma at which the closest unused weight is guaranteed <
|
||||
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
||||
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
||||
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
||||
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
||||
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
||||
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
||||
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
||||
// A generalized Gaussian beam varies shape with color too, now just width.
|
||||
// It's slower but more flexible (static option only for now).
|
||||
static const bool beam_generalized_gaussian = true;
|
||||
// What kind of scanline antialiasing do you want?
|
||||
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
||||
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
||||
// better than 3x antialiasing (static option only for now).
|
||||
static const float beam_antialias_level = 1.0; // range [0, 2]
|
||||
// Min/max standard deviations for scanline beams: Higher values widen and
|
||||
// soften scanlines. Depending on other options, low min sigmas can alias.
|
||||
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
||||
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
||||
// Beam width varies as a function of color: A power function (0) is more
|
||||
// configurable, but a spherical function (1) gives the widest beam
|
||||
// variability without aliasing (static option only for now).
|
||||
static const float beam_spot_shape_function = 0.0;
|
||||
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
||||
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
||||
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
||||
// Generalized Gaussian max shape parameters: Higher values give flatter
|
||||
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
||||
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
||||
// values > ~40.0 cause artifacts with integrals.
|
||||
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
||||
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
||||
// Generalized Gaussian shape power: Affects how quickly the distribution
|
||||
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
||||
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
||||
// appear sharper for most colors.
|
||||
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
||||
// What filter should be used to sample scanlines horizontally?
|
||||
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
||||
static const float beam_horiz_filter_static = 0.0;
|
||||
// Standard deviation for horizontal Gaussian resampling:
|
||||
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
||||
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
||||
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
||||
// limiting circuitry in some CRT's), or a weighted avg.?
|
||||
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
||||
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
||||
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
||||
// later passes (static option only for now).
|
||||
static const bool beam_misconvergence = true;
|
||||
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
||||
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
||||
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
||||
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
||||
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
||||
// Detect interlacing (static option only for now)?
|
||||
static const bool interlace_detect_static = true;
|
||||
// Assume 1080-line sources are interlaced?
|
||||
static const bool interlace_1080i_static = false;
|
||||
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
||||
// (Whether this matters depends on the nature of the interlaced input.)
|
||||
static const bool interlace_bff_static = false;
|
||||
|
||||
// ANTIALIASING:
|
||||
// What AA level do you want for curvature/overscan/subpixels? Options:
|
||||
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
||||
// (Static option only for now)
|
||||
static const float aa_level = 12.0; // range [0, 24]
|
||||
// What antialiasing filter do you want (static option only)? Options:
|
||||
// 0: Box (separable), 1: Box (cylindrical),
|
||||
// 2: Tent (separable), 3: Tent (cylindrical),
|
||||
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
||||
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
||||
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
||||
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
||||
static const float aa_filter = 6.0; // range [0, 9]
|
||||
// Flip the sample grid on odd/even frames (static option only for now)?
|
||||
static const bool aa_temporal = false;
|
||||
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
||||
// the blue offset is the negative r offset; range [0, 0.5]
|
||||
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
||||
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
||||
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
||||
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
||||
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
||||
// 4.) C = 0.0 is a soft spline filter.
|
||||
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
||||
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
||||
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
||||
|
||||
// PHOSPHOR MASK:
|
||||
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
||||
static const float mask_type_static = 1.0; // range [0, 2]
|
||||
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
||||
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
||||
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
||||
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
||||
// is halfway decent with LUT mipmapping but atrocious without it.
|
||||
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
||||
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
||||
// This mode reuses the same masks, so triads will be enormous unless
|
||||
// you change the mask LUT filenames in your .cgp file.
|
||||
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
||||
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
||||
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
||||
// will always be used to calculate the full bloom sigma statically.
|
||||
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
||||
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
||||
// triads) will be rounded to the nearest integer tile size and clamped to
|
||||
// obey minimum size constraints (imposed to reduce downsize taps) and
|
||||
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
||||
// To increase the size limit, double the viewport-relative scales for the
|
||||
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
||||
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
||||
// final size will be rounded and constrained as above); default 480.0
|
||||
static const float mask_num_triads_desired_static = 480.0;
|
||||
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
||||
// more samples and avoid moire a bit better, but some is unavoidable
|
||||
// depending on the destination size (static option for now).
|
||||
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
||||
// The mask is resized using a variable number of taps in each dimension,
|
||||
// but some Cg profiles always fetch a constant number of taps no matter
|
||||
// what (no dynamic branching). We can limit the maximum number of taps if
|
||||
// we statically limit the minimum phosphor triad size. Larger values are
|
||||
// faster, but the limit IS enforced (static option only, forever);
|
||||
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
||||
// TODO: Make this 1.0 and compensate with smarter sampling!
|
||||
static const float mask_min_allowed_triad_size = 2.0;
|
||||
|
||||
// GEOMETRY:
|
||||
// Geometry mode:
|
||||
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
||||
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
||||
static const float geom_mode_static = 0.0; // range [0, 3]
|
||||
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
||||
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
||||
// View dist is the distance from the player to their physical screen, in
|
||||
// units of the viewport's diagonal size. It controls the field of view.
|
||||
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
||||
// Tilt angle in radians (clockwise around up and right vectors):
|
||||
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
||||
// Aspect ratio: When the true viewport size is unknown, this value is used
|
||||
// to help convert between the phosphor triad size and count, along with
|
||||
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
||||
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
||||
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
||||
// default (256/224)*(54/47) = 1.313069909 (see below)
|
||||
static const float geom_aspect_ratio_static = 1.313069909;
|
||||
// Before getting into overscan, here's some general aspect ratio info:
|
||||
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
||||
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
||||
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
||||
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
||||
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
||||
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
||||
// a.) Enable Retroarch's "Crop Overscan"
|
||||
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
||||
// Real consoles use horizontal black padding in the signal, but emulators
|
||||
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
||||
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
||||
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
||||
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
||||
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
||||
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
||||
// without doing a. or b., but horizontal image borders will be tighter
|
||||
// than vertical ones, messing up curvature and overscan. Fixing the
|
||||
// padding first corrects this.
|
||||
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
||||
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
||||
// above: Values < 1.0 zoom out; range (0, inf)
|
||||
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
||||
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
||||
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
||||
// with strong curvature (static option only for now).
|
||||
static const bool geom_force_correct_tangent_matrix = true;
|
||||
|
||||
// BORDERS:
|
||||
// Rounded border size in texture uv coords:
|
||||
static const float border_size_static = 0.015; // range [0, 0.5]
|
||||
// Border darkness: Moderate values darken the border smoothly, and high
|
||||
// values make the image very dark just inside the border:
|
||||
static const float border_darkness_static = 2.0; // range [0, inf)
|
||||
// Border compression: High numbers compress border transitions, narrowing
|
||||
// the dark border area.
|
||||
static const float border_compress_static = 2.5; // range [1, inf)
|
||||
|
||||
|
||||
#endif // USER_SETTINGS_H
|
||||
|
|
@ -0,0 +1,97 @@
|
|||
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||||
|
||||
// Copyright (C) 2014 TroggleMonkey
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to
|
||||
// deal in the Software without restriction, including without limitation the
|
||||
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
// sell copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
// IN THE SOFTWARE.
|
||||
|
||||
|
||||
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
||||
|
||||
// PASS SETTINGS:
|
||||
// gamma-management.h needs to know what kind of pipeline we're using and
|
||||
// what pass this is in that pipeline. This will become obsolete if/when we
|
||||
// can #define things like this in the .cgp preset file.
|
||||
//#define GAMMA_ENCODE_EVERY_FBO
|
||||
//#define FIRST_PASS
|
||||
//#define LAST_PASS
|
||||
//#define SIMULATE_CRT_ON_LCD
|
||||
//#define SIMULATE_GBA_ON_LCD
|
||||
//#define SIMULATE_LCD_ON_CRT
|
||||
//#define SIMULATE_GBA_ON_CRT
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
// #included by vertex shader:
|
||||
#include "../include/gamma-management.fxh"
|
||||
#include "../include/blur-functions.fxh"
|
||||
|
||||
///////////////////////////////// STRUCTURES /////////////////////////////////
|
||||
|
||||
struct out_vertex_p4
|
||||
{
|
||||
float2 blur_dxdy : TEXCOORD1;
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////// VERTEX SHADER ///////////////////////////////
|
||||
|
||||
|
||||
// Vertex shader generating a triangle covering the entire screen
|
||||
void VS_Blur9Fast_Horizontal(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out out_vertex_p4 OUT)
|
||||
{
|
||||
texcoord.x = (id == 2) ? 2.0 : 0.0;
|
||||
texcoord.y = (id == 1) ? 2.0 : 0.0;
|
||||
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
|
||||
|
||||
/* float2 texture_size = 1.0/NormalizedNativePixelSize;
|
||||
float2 output_size = (ViewportSize*BufferToViewportRatio);
|
||||
float2 video_size = 1.0/NormalizedNativePixelSize;
|
||||
*/
|
||||
// float2 texture_size = float2(320.0, 240.0);
|
||||
float2 texture_size = HALATION_BLUR_texture_size;
|
||||
float2 output_size = VIEWPORT_SIZE;
|
||||
// float2 output_size = VIEWPORT_SIZE*NormalizedNativePixelSize/float2(320.0, 240.0);
|
||||
// float2 output_size = float2(320.0, 240.0);
|
||||
// float2 output_size = 1.0/NormalizedNativePixelSize;
|
||||
|
||||
// Get the uv sample distance between output pixels. Blurs are not generic
|
||||
// Gaussian resizers, and correct blurs require:
|
||||
// 1.) IN.output_size == IN.video_size * 2^m, where m is an integer <= 0.
|
||||
// 2.) mipmap_inputN = "true" for this pass in .cgp preset if m != 0
|
||||
// 3.) filter_linearN = "true" except for 1x scale nearest neighbor blurs
|
||||
// Gaussian resizers would upsize using the distance between input texels
|
||||
// (not output pixels), but we avoid this and consistently blur at the
|
||||
// destination size. Otherwise, combining statically calculated weights
|
||||
// with bilinear sample exploitation would result in terrible artifacts.
|
||||
const float2 dxdy_scale = video_size/output_size;
|
||||
const float2 dxdy = dxdy_scale/texture_size;
|
||||
// This blur is horizontal-only, so zero out the vertical offset:
|
||||
OUT.blur_dxdy = float2(dxdy.x, 0.0);
|
||||
}
|
||||
|
||||
/////////////////////////////// FRAGMENT SHADER //////////////////////////////
|
||||
|
||||
float4 PS_Blur9Fast_Horizontal(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in out_vertex_p4 VAR) : SV_Target
|
||||
{
|
||||
float3 color = tex2Dblur9fast(BLUR9FAST_VERTICAL, vTexCoord, VAR.blur_dxdy);
|
||||
// Encode and output the blurred image:
|
||||
return encode_output(float4(color, 1.0));
|
||||
}
|
||||
|
|
@ -0,0 +1,95 @@
|
|||
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
||||
|
||||
// Copyright (C) 2014 TroggleMonkey
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to
|
||||
// deal in the Software without restriction, including without limitation the
|
||||
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
||||
// sell copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||||
// IN THE SOFTWARE.
|
||||
|
||||
|
||||
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
||||
|
||||
// PASS SETTINGS:
|
||||
// gamma-management.h needs to know what kind of pipeline we're using and
|
||||
// what pass this is in that pipeline. This will become obsolete if/when we
|
||||
// can #define things like this in the .cgp preset file.
|
||||
//#define GAMMA_ENCODE_EVERY_FBO
|
||||
//#define FIRST_PASS
|
||||
//#define LAST_PASS
|
||||
//#define SIMULATE_CRT_ON_LCD
|
||||
//#define SIMULATE_GBA_ON_LCD
|
||||
//#define SIMULATE_LCD_ON_CRT
|
||||
//#define SIMULATE_GBA_ON_CRT
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "../include/gamma-management.fxh"
|
||||
#include "../include/blur-functions.fxh"
|
||||
|
||||
///////////////////////////////// STRUCTURES /////////////////////////////////
|
||||
|
||||
struct out_vertex_p3
|
||||
{
|
||||
float2 blur_dxdy : TEXCOORD1;
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////// VERTEX SHADER ///////////////////////////////
|
||||
|
||||
|
||||
// Vertex shader generating a triangle covering the entire screen
|
||||
void VS_Blur9Fast_Vertical(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out out_vertex_p3 OUT)
|
||||
{
|
||||
texcoord.x = (id == 2) ? 2.0 : 0.0;
|
||||
texcoord.y = (id == 1) ? 2.0 : 0.0;
|
||||
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
|
||||
/*
|
||||
float2 texture_size = 1.0/NormalizedNativePixelSize;
|
||||
float2 output_size = (ViewportSize*BufferToViewportRatio);
|
||||
float2 video_size = 1.0/NormalizedNativePixelSize;
|
||||
*/
|
||||
// float2 texture_size = float2(320.0, 240.0);
|
||||
float2 texture_size = BLUR9FAST_VERTICAL_texture_size;
|
||||
float2 output_size = VIEWPORT_SIZE;
|
||||
// float2 output_size = VIEWPORT_SIZE/4.0;
|
||||
// float2 output_size = VIEWPORT_SIZE*NormalizedNativePixelSize/float2(320.0, 240.0);
|
||||
// float2 output_size = 1.0/NormalizedNativePixelSize;
|
||||
|
||||
// Get the uv sample distance between output pixels. Blurs are not generic
|
||||
// Gaussian resizers, and correct blurs require:
|
||||
// 1.) IN.output_size == IN.video_size * 2^m, where m is an integer <= 0.
|
||||
// 2.) mipmap_inputN = "true" for this pass in .cgp preset if m != 0
|
||||
// 3.) filter_linearN = "true" except for 1x scale nearest neighbor blurs
|
||||
// Gaussian resizers would upsize using the distance between input texels
|
||||
// (not output pixels), but we avoid this and consistently blur at the
|
||||
// destination size. Otherwise, combining statically calculated weights
|
||||
// with bilinear sample exploitation would result in terrible artifacts.
|
||||
const float2 dxdy_scale = video_size/output_size;
|
||||
const float2 dxdy = dxdy_scale/texture_size;
|
||||
// This blur is vertical-only, so zero out the horizontal offset:
|
||||
OUT.blur_dxdy = float2(0.0, dxdy.y);
|
||||
}
|
||||
|
||||
/////////////////////////////// FRAGMENT SHADER //////////////////////////////
|
||||
|
||||
float4 PS_Blur9Fast_Vertical(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in out_vertex_p3 VAR) : SV_Target
|
||||
{
|
||||
float3 color = tex2Dblur9fast(BLOOM_APPROX, vTexCoord, VAR.blur_dxdy);
|
||||
// Encode and output the blurred image:
|
||||
return encode_output(float4(color, 1.0));
|
||||
}
|
|
@ -0,0 +1,363 @@
|
|||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#define ORIG_LINEARIZEDvideo_size VERTICAL_SCANLINES_texture_size
|
||||
#define ORIG_LINEARIZEDtexture_size VERTICAL_SCANLINES_video_size
|
||||
|
||||
#define bloom_approx_scale_x (4.0/3.0)
|
||||
static const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0);
|
||||
|
||||
#include "../include/user-settings.fxh"
|
||||
#include "../include/derived-settings-and-constants.fxh"
|
||||
#include "../include/bind-shader-params.fxh"
|
||||
#include "../include/gamma-management.fxh"
|
||||
#include "../include/blur-functions.fxh"
|
||||
#include "../include/scanline-functions.fxh"
|
||||
#include "../include/bloom-functions.fxh"
|
||||
|
||||
/////////////////////////////////// HELPERS //////////////////////////////////
|
||||
|
||||
float3 tex2Dresize_gaussian4x4(const sampler2D tex, const float2 tex_uv,
|
||||
const float2 dxdy, const float2 texture_size, const float2 texture_size_inv,
|
||||
const float2 tex_uv_to_pixel_scale, const float sigma)
|
||||
{
|
||||
// Requires: 1.) All requirements of gamma-management.h must be satisfied!
|
||||
// 2.) filter_linearN must == "true" in your .cgp preset.
|
||||
// 3.) mipmap_inputN must == "true" in your .cgp preset if
|
||||
// IN.output_size << SRC.video_size.
|
||||
// 4.) dxdy should contain the uv pixel spacing:
|
||||
// dxdy = max(float2(1.0),
|
||||
// SRC.video_size/IN.output_size)/SRC.texture_size;
|
||||
// 5.) texture_size == SRC.texture_size
|
||||
// 6.) texture_size_inv == float2(1.0)/SRC.texture_size
|
||||
// 7.) tex_uv_to_pixel_scale == IN.output_size *
|
||||
// SRC.texture_size / SRC.video_size;
|
||||
// 8.) sigma is the desired Gaussian standard deviation, in
|
||||
// terms of output pixels. It should be < ~0.66171875 to
|
||||
// ensure the first unused sample (outside the 4x4 box) has
|
||||
// a weight < 1.0/256.0.
|
||||
// Returns: A true 4x4 Gaussian resize of the input.
|
||||
// Description:
|
||||
// Given correct inputs, this Gaussian resizer samples 4 pixel locations
|
||||
// along each downsized dimension and/or 4 texel locations along each
|
||||
// upsized dimension. It computes dynamic weights based on the pixel-space
|
||||
// distance of each sample from the destination pixel. It is arbitrarily
|
||||
// resizable and higher quality than tex2Dblur3x3_resize, but it's slower.
|
||||
// TODO: Move this to a more suitable file once there are others like it.
|
||||
const float denom_inv = 0.5/(sigma*sigma);
|
||||
// We're taking 4x4 samples, and we're snapping to texels for upsizing.
|
||||
// Find texture coords for sample 5 (second row, second column):
|
||||
const float2 curr_texel = tex_uv * texture_size;
|
||||
const float2 prev_texel =
|
||||
floor(curr_texel - under_half.xx) + 0.5.xx;
|
||||
const float2 prev_texel_uv = prev_texel * texture_size_inv;
|
||||
const float2 snap = float2(dxdy <= texture_size_inv);
|
||||
const float2 sample5_downsize_uv = tex_uv - 0.5 * dxdy;
|
||||
const float2 sample5_uv = lerp(sample5_downsize_uv, prev_texel_uv, snap);
|
||||
// Compute texture coords for other samples:
|
||||
const float2 dx = float2(dxdy.x, 0.0);
|
||||
const float2 sample0_uv = sample5_uv - dxdy;
|
||||
const float2 sample10_uv = sample5_uv + dxdy;
|
||||
const float2 sample15_uv = sample5_uv + 2.0 * dxdy;
|
||||
const float2 sample1_uv = sample0_uv + dx;
|
||||
const float2 sample2_uv = sample0_uv + 2.0 * dx;
|
||||
const float2 sample3_uv = sample0_uv + 3.0 * dx;
|
||||
const float2 sample4_uv = sample5_uv - dx;
|
||||
const float2 sample6_uv = sample5_uv + dx;
|
||||
const float2 sample7_uv = sample5_uv + 2.0 * dx;
|
||||
const float2 sample8_uv = sample10_uv - 2.0 * dx;
|
||||
const float2 sample9_uv = sample10_uv - dx;
|
||||
const float2 sample11_uv = sample10_uv + dx;
|
||||
const float2 sample12_uv = sample15_uv - 3.0 * dx;
|
||||
const float2 sample13_uv = sample15_uv - 2.0 * dx;
|
||||
const float2 sample14_uv = sample15_uv - dx;
|
||||
// Load each sample:
|
||||
const float3 sample0 = tex2D_linearize(tex, sample0_uv).rgb;
|
||||
const float3 sample1 = tex2D_linearize(tex, sample1_uv).rgb;
|
||||
const float3 sample2 = tex2D_linearize(tex, sample2_uv).rgb;
|
||||
const float3 sample3 = tex2D_linearize(tex, sample3_uv).rgb;
|
||||
const float3 sample4 = tex2D_linearize(tex, sample4_uv).rgb;
|
||||
const float3 sample5 = tex2D_linearize(tex, sample5_uv).rgb;
|
||||
const float3 sample6 = tex2D_linearize(tex, sample6_uv).rgb;
|
||||
const float3 sample7 = tex2D_linearize(tex, sample7_uv).rgb;
|
||||
const float3 sample8 = tex2D_linearize(tex, sample8_uv).rgb;
|
||||
const float3 sample9 = tex2D_linearize(tex, sample9_uv).rgb;
|
||||
const float3 sample10 = tex2D_linearize(tex, sample10_uv).rgb;
|
||||
const float3 sample11 = tex2D_linearize(tex, sample11_uv).rgb;
|
||||
const float3 sample12 = tex2D_linearize(tex, sample12_uv).rgb;
|
||||
const float3 sample13 = tex2D_linearize(tex, sample13_uv).rgb;
|
||||
const float3 sample14 = tex2D_linearize(tex, sample14_uv).rgb;
|
||||
const float3 sample15 = tex2D_linearize(tex, sample15_uv).rgb;
|
||||
// Compute destination pixel offsets for each sample:
|
||||
const float2 dest_pixel = tex_uv * tex_uv_to_pixel_scale;
|
||||
const float2 sample0_offset = sample0_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample1_offset = sample1_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample2_offset = sample2_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample3_offset = sample3_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample4_offset = sample4_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample5_offset = sample5_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample6_offset = sample6_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample7_offset = sample7_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample8_offset = sample8_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample9_offset = sample9_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample10_offset = sample10_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample11_offset = sample11_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample12_offset = sample12_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample13_offset = sample13_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample14_offset = sample14_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
const float2 sample15_offset = sample15_uv * tex_uv_to_pixel_scale - dest_pixel;
|
||||
// Compute Gaussian sample weights:
|
||||
const float w0 = exp(-LENGTH_SQ(sample0_offset) * denom_inv);
|
||||
const float w1 = exp(-LENGTH_SQ(sample1_offset) * denom_inv);
|
||||
const float w2 = exp(-LENGTH_SQ(sample2_offset) * denom_inv);
|
||||
const float w3 = exp(-LENGTH_SQ(sample3_offset) * denom_inv);
|
||||
const float w4 = exp(-LENGTH_SQ(sample4_offset) * denom_inv);
|
||||
const float w5 = exp(-LENGTH_SQ(sample5_offset) * denom_inv);
|
||||
const float w6 = exp(-LENGTH_SQ(sample6_offset) * denom_inv);
|
||||
const float w7 = exp(-LENGTH_SQ(sample7_offset) * denom_inv);
|
||||
const float w8 = exp(-LENGTH_SQ(sample8_offset) * denom_inv);
|
||||
const float w9 = exp(-LENGTH_SQ(sample9_offset) * denom_inv);
|
||||
const float w10 = exp(-LENGTH_SQ(sample10_offset) * denom_inv);
|
||||
const float w11 = exp(-LENGTH_SQ(sample11_offset) * denom_inv);
|
||||
const float w12 = exp(-LENGTH_SQ(sample12_offset) * denom_inv);
|
||||
const float w13 = exp(-LENGTH_SQ(sample13_offset) * denom_inv);
|
||||
const float w14 = exp(-LENGTH_SQ(sample14_offset) * denom_inv);
|
||||
const float w15 = exp(-LENGTH_SQ(sample15_offset) * denom_inv);
|
||||
const float weight_sum_inv = 1.0/(
|
||||
w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 +
|
||||
w8 +w9 + w10 + w11 + w12 + w13 + w14 + w15);
|
||||
// Weight and sum the samples:
|
||||
const float3 sum = w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
|
||||
w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
|
||||
w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
|
||||
w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15;
|
||||
return sum * weight_sum_inv;
|
||||
}
|
||||
|
||||
///////////////////////////////// STRUCTURES /////////////////////////////////
|
||||
|
||||
struct out_vertex_p2
|
||||
{
|
||||
float2 tex_uv : TEXCOORD1;
|
||||
float2 blur_dxdy : TEXCOORD2;
|
||||
float2 uv_scanline_step : TEXCOORD3;
|
||||
float estimated_viewport_size_x : TEXCOORD4;
|
||||
float2 texture_size_inv : TEXCOORD5;
|
||||
float2 tex_uv_to_pixel_scale : TEXCOORD6;
|
||||
float2 output_size : TEXCOORD7;
|
||||
};
|
||||
|
||||
|
||||
|
||||
//////////////////////////////// VERTEX SHADER ///////////////////////////////
|
||||
|
||||
// Vertex shader generating a triangle covering the entire screen
|
||||
void VS_Bloom_Approx(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out out_vertex_p2 OUT)
|
||||
{
|
||||
texcoord.x = (id == 2) ? 2.0 : 0.0;
|
||||
texcoord.y = (id == 1) ? 2.0 : 0.0;
|
||||
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
|
||||
|
||||
float2 texture_size = BLOOM_APPROX_texture_size;
|
||||
float2 output_size = VIEWPORT_SIZE;
|
||||
|
||||
OUT.output_size = output_size;
|
||||
|
||||
// This vertex shader copies blurs/vertex-shader-blur-one-pass-resize.h,
|
||||
// except we're using a different source image.
|
||||
const float2 video_uv = texcoord * texture_size/video_size;
|
||||
OUT.tex_uv = video_uv * ORIG_LINEARIZEDvideo_size /
|
||||
ORIG_LINEARIZEDtexture_size;
|
||||
// The last pass (vertical scanlines) had a viewport y scale, so we can
|
||||
// use it to calculate a better runtime sigma:
|
||||
// OUT.estimated_viewport_size_x = video_size.y * geom_aspect_ratio_x/geom_aspect_ratio_y;
|
||||
OUT.estimated_viewport_size_x = video_size.y * texture_size.x/texture_size.y;
|
||||
|
||||
// Get the uv sample distance between output pixels. We're using a resize
|
||||
// blur, so arbitrary upsizing will be acceptable if filter_linearN =
|
||||
// "true," and arbitrary downsizing will be acceptable if mipmap_inputN =
|
||||
// "true" too. The blur will be much more accurate if a true 4x4 Gaussian
|
||||
// resize is used instead of tex2Dblur3x3_resize (which samples between
|
||||
// texels even for upsizing).
|
||||
const float2 dxdy_min_scale = ORIG_LINEARIZEDvideo_size/output_size;
|
||||
const float2 texture_size_inv = 1.0.xx/ORIG_LINEARIZEDtexture_size;
|
||||
if(bloom_approx_filter > 1.5) // 4x4 true Gaussian resize
|
||||
{
|
||||
// For upsizing, we'll snap to texels and sample the nearest 4.
|
||||
const float2 dxdy_scale = max(dxdy_min_scale, 1.0.xx);
|
||||
OUT.blur_dxdy = dxdy_scale * texture_size_inv;
|
||||
}
|
||||
else
|
||||
{
|
||||
const float2 dxdy_scale = dxdy_min_scale;
|
||||
OUT.blur_dxdy = dxdy_scale * texture_size_inv;
|
||||
}
|
||||
// tex2Dresize_gaussian4x4 needs to know a bit more than the other filters:
|
||||
OUT.tex_uv_to_pixel_scale = output_size *
|
||||
ORIG_LINEARIZEDtexture_size / ORIG_LINEARIZEDvideo_size;
|
||||
OUT.texture_size_inv = texture_size_inv;
|
||||
|
||||
// Detecting interlacing again here lets us apply convergence offsets in
|
||||
// this pass. il_step_multiple contains the (texel, scanline) step
|
||||
// multiple: 1 for progressive, 2 for interlaced.
|
||||
const float2 orig_video_size = ORIG_LINEARIZEDvideo_size;
|
||||
const float y_step = 1.0 + float(is_interlaced(orig_video_size.y));
|
||||
const float2 il_step_multiple = float2(1.0, y_step);
|
||||
// Get the uv distance between (texels, same-field scanlines):
|
||||
OUT.uv_scanline_step = il_step_multiple / ORIG_LINEARIZEDtexture_size;
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////// FRAGMENT SHADER //////////////////////////////
|
||||
|
||||
float4 PS_Bloom_Approx(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in out_vertex_p2 VAR) : SV_Target
|
||||
{
|
||||
// Would a viewport-relative size work better for this pass? (No.)
|
||||
// PROS:
|
||||
// 1.) Instead of writing an absolute size to user-cgp-constants.h, we'd
|
||||
// write a viewport scale. That number could be used to directly scale
|
||||
// the viewport-resolution bloom sigma and/or triad size to a smaller
|
||||
// scale. This way, we could calculate an optimal dynamic sigma no
|
||||
// matter how the dot pitch is specified.
|
||||
// CONS:
|
||||
// 1.) Texel smearing would be much worse at small viewport sizes, but
|
||||
// performance would be much worse at large viewport sizes, so there
|
||||
// would be no easy way to calculate a decent scale.
|
||||
// 2.) Worse, we could no longer get away with using a constant-size blur!
|
||||
// Instead, we'd have to face all the same difficulties as the real
|
||||
// phosphor bloom, which requires static #ifdefs to decide the blur
|
||||
// size based on the expected triad size...a dynamic value.
|
||||
// 3.) Like the phosphor bloom, we'd have less control over making the blur
|
||||
// size correct for an optical blur. That said, we likely overblur (to
|
||||
// maintain brightness) more than the eye would do by itself: 20/20
|
||||
// human vision distinguishes ~1 arc minute, or 1/60 of a degree. The
|
||||
// highest viewing angle recommendation I know of is THX's 40.04 degree
|
||||
// recommendation, at which 20/20 vision can distinguish about 2402.4
|
||||
// lines. Assuming the "TV lines" definition, that means 1201.2
|
||||
// distinct light lines and 1201.2 distinct dark lines can be told
|
||||
// apart, i.e. 1201.2 pairs of lines. This would correspond to 1201.2
|
||||
// pairs of alternating lit/unlit phosphors, so 2402.4 phosphors total
|
||||
// (if they're alternately lit). That's a max of 800.8 triads. Using
|
||||
// a more popular 30 degree viewing angle recommendation, 20/20 vision
|
||||
// can distinguish 1800 lines, or 600 triads of alternately lit
|
||||
// phosphors. In contrast, we currently blur phosphors all the way
|
||||
// down to 341.3 triads to ensure full brightness.
|
||||
// 4.) Realistically speaking, we're usually just going to use bilinear
|
||||
// filtering in this pass anyway, but it only works well to limit
|
||||
// bandwidth if it's done at a small constant scale.
|
||||
|
||||
// Get the constants we need to sample:
|
||||
float2 output_size = VAR.output_size;
|
||||
//const sampler2D Source = ORIG_LINEARIZED;
|
||||
const float2 tex_uv = VAR.tex_uv;
|
||||
const float2 blur_dxdy = VAR.blur_dxdy;
|
||||
const float2 texture_size = ORIG_LINEARIZEDtexture_size;
|
||||
const float2 texture_size_inv = VAR.texture_size_inv;
|
||||
const float2 tex_uv_to_pixel_scale = VAR.tex_uv_to_pixel_scale;
|
||||
float2 tex_uv_r, tex_uv_g, tex_uv_b;
|
||||
if(beam_misconvergence)
|
||||
{
|
||||
const float2 uv_scanline_step = VAR.uv_scanline_step;
|
||||
const float2 convergence_offsets_r = get_convergence_offsets_r_vector();
|
||||
const float2 convergence_offsets_g = get_convergence_offsets_g_vector();
|
||||
const float2 convergence_offsets_b = get_convergence_offsets_b_vector();
|
||||
tex_uv_r = tex_uv - convergence_offsets_r * uv_scanline_step;
|
||||
tex_uv_g = tex_uv - convergence_offsets_g * uv_scanline_step;
|
||||
tex_uv_b = tex_uv - convergence_offsets_b * uv_scanline_step;
|
||||
}
|
||||
// Get the blur sigma:
|
||||
const float bloom_approx_sigma = get_bloom_approx_sigma(output_size.x,
|
||||
VAR.estimated_viewport_size_x);
|
||||
|
||||
// Sample the resized and blurred texture, and apply convergence offsets if
|
||||
// necessary. Applying convergence offsets here triples our samples from
|
||||
// 16/9/1 to 48/27/3, but faster and easier than sampling BLOOM_APPROX and
|
||||
// HALATION_BLUR 3 times at full resolution every time they're used.
|
||||
float3 color_r, color_g, color_b, color;
|
||||
if(bloom_approx_filter > 1.5)
|
||||
{
|
||||
// Use a 4x4 Gaussian resize. This is slower but technically correct.
|
||||
if(beam_misconvergence)
|
||||
{
|
||||
color_r = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv_r,
|
||||
blur_dxdy, texture_size, texture_size_inv,
|
||||
tex_uv_to_pixel_scale, bloom_approx_sigma);
|
||||
color_g = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv_g,
|
||||
blur_dxdy, texture_size, texture_size_inv,
|
||||
tex_uv_to_pixel_scale, bloom_approx_sigma);
|
||||
color_b = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv_b,
|
||||
blur_dxdy, texture_size, texture_size_inv,
|
||||
tex_uv_to_pixel_scale, bloom_approx_sigma);
|
||||
}
|
||||
else
|
||||
{
|
||||
color = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv,
|
||||
blur_dxdy, texture_size, texture_size_inv,
|
||||
tex_uv_to_pixel_scale, bloom_approx_sigma);
|
||||
}
|
||||
}
|
||||
else if(bloom_approx_filter > 0.5)
|
||||
{
|
||||
// Use a 3x3 resize blur. This is the softest option, because we're
|
||||
// blurring already blurry bilinear samples. It doesn't play quite as
|
||||
// nicely with convergence offsets, but it has its charms.
|
||||
if(beam_misconvergence)
|
||||
{
|
||||
color_r = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv_r,
|
||||
blur_dxdy, bloom_approx_sigma);
|
||||
color_g = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv_g,
|
||||
blur_dxdy, bloom_approx_sigma);
|
||||
color_b = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv_b,
|
||||
blur_dxdy, bloom_approx_sigma);
|
||||
}
|
||||
else
|
||||
{
|
||||
color = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv, blur_dxdy);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Use bilinear sampling. This approximates a 4x4 Gaussian resize MUCH
|
||||
// better than tex2Dblur3x3_resize for the very small sigmas we're
|
||||
// likely to use at small output resolutions. (This estimate becomes
|
||||
// too sharp above ~400x300, but the blurs break down above that
|
||||
// resolution too, unless min_allowed_viewport_triads is high enough to
|
||||
// keep bloom_approx_scale_x/min_allowed_viewport_triads < ~1.1658025.)
|
||||
if(beam_misconvergence)
|
||||
{
|
||||
color_r = tex2D_linearize(ORIG_LINEARIZED, tex_uv_r).rgb;
|
||||
color_g = tex2D_linearize(ORIG_LINEARIZED, tex_uv_g).rgb;
|
||||
color_b = tex2D_linearize(ORIG_LINEARIZED, tex_uv_b).rgb;
|
||||
}
|
||||
else
|
||||
{
|
||||
color = tex2D_linearize(ORIG_LINEARIZED, tex_uv).rgb;
|
||||
}
|
||||
}
|
||||
// Pack the colors from the red/green/blue beams into a single vector:
|
||||
if(beam_misconvergence)
|
||||
{
|
||||
color = float3(color_r.r, color_g.g, color_b.b);
|
||||
}
|
||||
// Encode and output the blurred image:
|
||||
return encode_output(float4(color, 1.0));
|
||||
}
|
||||
|
|
@ -0,0 +1,129 @@
|
|||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
||||
|
||||
#include "../include/user-settings.fxh"
|
||||
#include "../include/derived-settings-and-constants.fxh"
|
||||
#include "../include/bind-shader-params.fxh"
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "../include/gamma-management.fxh"
|
||||
#include "../include/bloom-functions.fxh"
|
||||
#include "../include/phosphor-mask-resizing.fxh"
|
||||
#include "../include/scanline-functions.fxh"
|
||||
|
||||
///////////////////////////////// STRUCTURES /////////////////////////////////
|
||||
|
||||
struct out_vertex_p10
|
||||
{
|
||||
float2 video_uv : TEXCOORD1;
|
||||
float2 bloom_dxdy : TEXCOORD2;
|
||||
float bloom_sigma_runtime : TEXCOORD3;
|
||||
float2 sinangle : TEXCOORD4;
|
||||
float2 cosangle : TEXCOORD5;
|
||||
float3 stretch : TEXCOORD6;
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////// VERTEX SHADER ///////////////////////////////
|
||||
|
||||
// Vertex shader generating a triangle covering the entire screen
|
||||
void VS_Bloom_Horizontal(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out out_vertex_p10 OUT)
|
||||
{
|
||||
texcoord.x = (id == 2) ? 2.0 : 0.0;
|
||||
texcoord.y = (id == 1) ? 2.0 : 0.0;
|
||||
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
|
||||
|
||||
float2 texture_size = BLOOM_HORIZONTAL_texture_size;
|
||||
float2 output_size = VIEWPORT_SIZE;
|
||||
|
||||
// Screen centering
|
||||
texcoord = texcoord - float2(centerx,centery)/100.0;
|
||||
|
||||
float2 tex_uv = texcoord;
|
||||
|
||||
// Our various input textures use different coords:
|
||||
const float2 video_uv = tex_uv * texture_size/video_size;
|
||||
OUT.video_uv = video_uv;
|
||||
|
||||
// We're horizontally blurring the bloom input (vertically blurred
|
||||
// brightpass). Get the uv distance between output pixels / input texels
|
||||
// in the horizontal direction (this pass must NOT resize):
|
||||
OUT.bloom_dxdy = float2(1.0/texture_size.x, 0.0);
|
||||
|
||||
// Calculate a runtime bloom_sigma in case it's needed:
|
||||
const float mask_tile_size_x = get_resized_mask_tile_size(
|
||||
output_size, output_size * mask_resize_viewport_scale, false).x;
|
||||
OUT.bloom_sigma_runtime = get_min_sigma_to_blur_triad(
|
||||
mask_tile_size_x / mask_triads_per_tile, bloom_diff_thresh);
|
||||
|
||||
// Precalculate a bunch of useful values we'll need in the fragment
|
||||
// shader.
|
||||
OUT.sinangle = sin(float2(geom_x_tilt, geom_y_tilt));
|
||||
OUT.cosangle = cos(float2(geom_x_tilt, geom_y_tilt));
|
||||
OUT.stretch = maxscale(OUT.sinangle, OUT.cosangle);
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////// FRAGMENT SHADER //////////////////////////////
|
||||
|
||||
float4 PS_Bloom_Horizontal(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in out_vertex_p10 VAR) : SV_Target
|
||||
{
|
||||
VAR.video_uv = (geom_curvature == true) ? transform(VAR.video_uv, VAR.sinangle, VAR.cosangle, VAR.stretch) : VAR.video_uv;
|
||||
|
||||
float cval = corner((VAR.video_uv-0.5.xx) * BufferToViewportRatio + 0.5.xx);
|
||||
|
||||
// Blur the vertically blurred brightpass horizontally by 9/17/25/43x:
|
||||
const float bloom_sigma = get_final_bloom_sigma(VAR.bloom_sigma_runtime);
|
||||
const float3 blurred_brightpass = tex2DblurNfast(BLOOM_VERTICAL,
|
||||
VAR.video_uv, VAR.bloom_dxdy, bloom_sigma);
|
||||
|
||||
// Sample the masked scanlines. Alpha contains the auto-dim factor:
|
||||
const float3 intensity_dim =
|
||||
tex2D_linearize(MASKED_SCANLINES, VAR.video_uv).rgb;
|
||||
const float auto_dim_factor = levels_autodim_temp;
|
||||
const float undim_factor = 1.0/auto_dim_factor;
|
||||
|
||||
// Calculate the mask dimpass, add it to the blurred brightpass, and
|
||||
// undim (from scanline auto-dim) and amplify (from mask dim) the result:
|
||||
const float mask_amplify = get_mask_amplify();
|
||||
const float3 brightpass = tex2D_linearize(BRIGHTPASS,
|
||||
VAR.video_uv).rgb;
|
||||
const float3 dimpass = intensity_dim - brightpass;
|
||||
const float3 phosphor_bloom = (dimpass + blurred_brightpass) *
|
||||
mask_amplify * undim_factor * levels_contrast;
|
||||
|
||||
// Sample the halation texture, and let some light bleed into refractive
|
||||
// diffusion. Conceptually this occurs before the phosphor bloom, but
|
||||
// adding it in earlier passes causes black crush in the diffusion colors.
|
||||
const float3 diffusion_color = levels_contrast * tex2D_linearize(
|
||||
HALATION_BLUR, VAR.video_uv).rgb;
|
||||
float3 final_bloom = lerp(phosphor_bloom,
|
||||
diffusion_color, diffusion_weight);
|
||||
|
||||
final_bloom = (geom_curvature == true) ? final_bloom * cval.xxx : final_bloom;
|
||||
|
||||
final_bloom = pow(final_bloom.rgb, 1.0/get_output_gamma());
|
||||
|
||||
// Encode and output the bloomed image:
|
||||
return encode_output(float4(final_bloom, 1.0));
|
||||
}
|
||||
|
|
@ -0,0 +1,83 @@
|
|||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
||||
|
||||
#include "../include/user-settings.fxh"
|
||||
#include "../include/derived-settings-and-constants.fxh"
|
||||
#include "../include/bind-shader-params.fxh"
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "../include/gamma-management.fxh"
|
||||
#include "../include/bloom-functions.fxh"
|
||||
#include "../include/phosphor-mask-resizing.fxh"
|
||||
|
||||
|
||||
///////////////////////////////// STRUCTURES /////////////////////////////////
|
||||
|
||||
struct out_vertex_p9
|
||||
{
|
||||
float2 tex_uv : TEXCOORD1;
|
||||
float2 bloom_dxdy : TEXCOORD2;
|
||||
float bloom_sigma_runtime : TEXCOORD3;
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////// VERTEX SHADER ///////////////////////////////
|
||||
|
||||
// Vertex shader generating a triangle covering the entire screen
|
||||
void VS_Bloom_Vertical(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out out_vertex_p9 OUT)
|
||||
{
|
||||
texcoord.x = (id == 2) ? 2.0 : 0.0;
|
||||
texcoord.y = (id == 1) ? 2.0 : 0.0;
|
||||
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
|
||||
|
||||
float2 texture_size = BLOOM_VERTICAL_texture_size;
|
||||
float2 output_size = VIEWPORT_SIZE;
|
||||
|
||||
OUT.tex_uv = texcoord;
|
||||
|
||||
// Get the uv sample distance between output pixels. Calculate dxdy like
|
||||
// blurs/vertex-shader-blur-fast-vertical.h.
|
||||
const float2 dxdy_scale = video_size/output_size;
|
||||
const float2 dxdy = dxdy_scale/texture_size;
|
||||
// This blur is vertical-only, so zero out the vertical offset:
|
||||
OUT.bloom_dxdy = float2(0.0, dxdy.y);
|
||||
|
||||
// Calculate a runtime bloom_sigma in case it's needed:
|
||||
const float mask_tile_size_x = get_resized_mask_tile_size(
|
||||
output_size, output_size * mask_resize_viewport_scale, false).x;
|
||||
OUT.bloom_sigma_runtime = get_min_sigma_to_blur_triad(
|
||||
mask_tile_size_x / mask_triads_per_tile, bloom_diff_thresh);
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////// FRAGMENT SHADER //////////////////////////////
|
||||
|
||||
float4 PS_Bloom_Vertical(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in out_vertex_p9 VAR) : SV_Target
|
||||
{
|
||||
// Blur the brightpass horizontally with a 9/17/25/43x blur:
|
||||
const float bloom_sigma = get_final_bloom_sigma(VAR.bloom_sigma_runtime);
|
||||
const float3 color = tex2DblurNfast(BRIGHTPASS, VAR.tex_uv,
|
||||
VAR.bloom_dxdy, bloom_sigma);
|
||||
// Encode and output the blurred image:
|
||||
return encode_output(float4(color, 1.0));
|
||||
}
|
||||
|
|
@ -0,0 +1,130 @@
|
|||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
||||
|
||||
#include "../include/user-settings.fxh"
|
||||
#include "../include/derived-settings-and-constants.fxh"
|
||||
#include "../include/bind-shader-params.fxh"
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "../include/gamma-management.fxh"
|
||||
#include "../include/blur-functions.fxh"
|
||||
#include "../include/phosphor-mask-resizing.fxh"
|
||||
#include "../include/scanline-functions.fxh"
|
||||
#include "../include/bloom-functions.fxh"
|
||||
|
||||
///////////////////////////////// STRUCTURES /////////////////////////////////
|
||||
|
||||
struct out_vertex_p8
|
||||
{
|
||||
float2 video_uv : TEXCOORD1;
|
||||
float2 scanline_tex_uv : TEXCOORD2;
|
||||
float2 blur3x3_tex_uv : TEXCOORD3;
|
||||
float bloom_sigma_runtime : TEXCOORD4;
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////// VERTEX SHADER ///////////////////////////////
|
||||
|
||||
// Vertex shader generating a triangle covering the entire screen
|
||||
void VS_Brightpass(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out out_vertex_p8 OUT)
|
||||
{
|
||||
texcoord.x = (id == 2) ? 2.0 : 0.0;
|
||||
texcoord.y = (id == 1) ? 2.0 : 0.0;
|
||||
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
|
||||
|
||||
float2 tex_uv = texcoord;
|
||||
|
||||
float2 texture_size = BRIGHTPASS_texture_size;
|
||||
float2 output_size = VIEWPORT_SIZE;
|
||||
|
||||
// Our various input textures use different coords:
|
||||
const float2 video_uv = tex_uv * texture_size/video_size;
|
||||
OUT.video_uv = video_uv;
|
||||
OUT.scanline_tex_uv = video_uv * MASKED_SCANLINES_video_size /
|
||||
MASKED_SCANLINES_texture_size;
|
||||
OUT.blur3x3_tex_uv = video_uv * BLOOM_APPROX_video_size / BLOOM_APPROX_texture_size;
|
||||
|
||||
// Calculate a runtime bloom_sigma in case it's needed:
|
||||
const float mask_tile_size_x = get_resized_mask_tile_size(
|
||||
output_size, output_size * mask_resize_viewport_scale, false).x;
|
||||
OUT.bloom_sigma_runtime = get_min_sigma_to_blur_triad(
|
||||
mask_tile_size_x / mask_triads_per_tile, bloom_diff_thresh);
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////// FRAGMENT SHADER //////////////////////////////
|
||||
|
||||
float4 PS_Brightpass(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in out_vertex_p8 VAR) : SV_Target
|
||||
{
|
||||
// Sample the masked scanlines:
|
||||
const float3 intensity_dim =
|
||||
tex2D_linearize(MASKED_SCANLINES, VAR.scanline_tex_uv).rgb;
|
||||
// Get the full intensity, including auto-undimming, and mask compensation:
|
||||
const float auto_dim_factor = levels_autodim_temp;
|
||||
const float undim_factor = 1.0/auto_dim_factor;
|
||||
const float mask_amplify = get_mask_amplify();
|
||||
const float3 intensity = intensity_dim * undim_factor * mask_amplify *
|
||||
levels_contrast;
|
||||
|
||||
// Sample BLOOM_APPROX to estimate what a straight blur of masked scanlines
|
||||
// would look like, so we can estimate how much energy we'll receive from
|
||||
// blooming neighbors:
|
||||
const float3 phosphor_blur_approx = levels_contrast * tex2D_linearize(
|
||||
BLOOM_APPROX, VAR.blur3x3_tex_uv).rgb;
|
||||
|
||||
// Compute the blur weight for the center texel and the maximum energy we
|
||||
// expect to receive from neighbors:
|
||||
const float bloom_sigma = get_final_bloom_sigma(VAR.bloom_sigma_runtime);
|
||||
const float center_weight = get_center_weight(bloom_sigma);
|
||||
const float3 max_area_contribution_approx =
|
||||
max(0.0.xxx, phosphor_blur_approx - center_weight * intensity);
|
||||
// Assume neighbors will blur 100% of their intensity (blur_ratio = 1.0),
|
||||
// because it actually gets better results (on top of being very simple),
|
||||
// but adjust all intensities for the user's desired underestimate factor:
|
||||
const float3 area_contrib_underestimate =
|
||||
bloom_underestimate_levels * max_area_contribution_approx;
|
||||
const float3 intensity_underestimate =
|
||||
bloom_underestimate_levels * intensity;
|
||||
// Calculate the blur_ratio, the ratio of intensity we want to blur:
|
||||
#ifdef BRIGHTPASS_AREA_BASED
|
||||
// This area-based version changes blur_ratio more smoothly and blurs
|
||||
// more, clipping less but offering less phosphor differentiation:
|
||||
const float3 phosphor_blur_underestimate = bloom_underestimate_levels *
|
||||
phosphor_blur_approx;
|
||||
const float3 soft_intensity = max(intensity_underestimate,
|
||||
phosphor_blur_underestimate * mask_amplify);
|
||||
const float3 blur_ratio_temp =
|
||||
((1.0.xxx - area_contrib_underestimate) /
|
||||
soft_intensity - 1.0.xxx) / (center_weight - 1.0);
|
||||
#else
|
||||
const float3 blur_ratio_temp =
|
||||
((1.0.xxx - area_contrib_underestimate) /
|
||||
intensity_underestimate - 1.0.xxx) / (center_weight - 1.0);
|
||||
#endif
|
||||
const float3 blur_ratio = clamp(blur_ratio_temp, 0.0, 1.0);
|
||||
// Calculate the brightpass based on the auto-dimmed, unamplified, masked
|
||||
// scanlines, encode if necessary, and return!
|
||||
const float3 brightpass = intensity_dim *
|
||||
lerp(blur_ratio, 1.0.xxx, bloom_excess);
|
||||
return encode_output(float4(brightpass, 1.0));
|
||||
}
|
||||
|
|
@ -0,0 +1,109 @@
|
|||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
||||
|
||||
// PASS SETTINGS:
|
||||
// gamma-management.h needs to know what kind of pipeline we're using and
|
||||
// what pass this is in that pipeline. This will become obsolete if/when we
|
||||
// can #define things like this in the .cgp preset file.
|
||||
#define FIRST_PASS
|
||||
#define SIMULATE_CRT_ON_LCD
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "../include/user-settings.fxh"
|
||||
#include "../include/bind-shader-params.fxh"
|
||||
#include "../include/gamma-management.fxh"
|
||||
#include "../include/scanline-functions.fxh"
|
||||
|
||||
|
||||
///////////////////////////////// STRUCTURES /////////////////////////////////
|
||||
|
||||
struct out_vertex
|
||||
{
|
||||
float2 tex_uv : TEXCOORD1;
|
||||
float2 uv_step : TEXCOORD2;
|
||||
float interlaced : TEXCOORD3;
|
||||
};
|
||||
|
||||
//////////////////////////////// VERTEX SHADER ///////////////////////////////
|
||||
|
||||
// Vertex shader generating a triangle covering the entire screen
|
||||
void VS_Linearize(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out out_vertex OUT)
|
||||
{
|
||||
texcoord.x = (id == 2) ? 2.0 : 0.0;
|
||||
texcoord.y = (id == 1) ? 2.0 : 0.0;
|
||||
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
|
||||
|
||||
OUT.tex_uv = texcoord;
|
||||
// OUT.tex_uv = (floor(texcoord / NormalizedNativePixelSize)+float2(0.5,0.5)) * NormalizedNativePixelSize;
|
||||
// Save the uv distance between texels:
|
||||
OUT.uv_step = NormalizedNativePixelSize;
|
||||
|
||||
// Detect interlacing: 1.0 = true, 0.0 = false.
|
||||
OUT.interlaced = is_interlaced(1.0/NormalizedNativePixelSize.y);
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////// FRAGMENT SHADER //////////////////////////////
|
||||
|
||||
sampler2D sBackBuffer{Texture=ReShade::BackBufferTex;AddressU=BORDER;AddressV=BORDER;AddressW=BORDER;MagFilter=POINT;MinFilter=POINT;};
|
||||
|
||||
#define input_texture sBackBuffer
|
||||
|
||||
float4 PS_Linearize(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in out_vertex VAR) : SV_Target
|
||||
{
|
||||
// Linearize the input based on CRT gamma and bob interlaced fields.
|
||||
// Bobbing ensures we can immediately blur without getting artifacts.
|
||||
// Note: TFF/BFF won't matter for sources that double-weave or similar.
|
||||
// VAR.tex_uv = (floor(VAR.tex_uv / NormalizedNativePixelSize)+float2(0.5,0.5)) * NormalizedNativePixelSize;
|
||||
|
||||
if(interlace_detect)
|
||||
{
|
||||
// Sample the current line and an average of the previous/next line;
|
||||
// tex2D_linearize will decode CRT gamma. Don't bother branching:
|
||||
const float2 tex_uv = VAR.tex_uv;
|
||||
const float2 v_step = float2(0.0, VAR.uv_step.y);
|
||||
const float3 curr_line = tex2D_linearize_first(
|
||||
input_texture, tex_uv).rgb;
|
||||
const float3 last_line = tex2D_linearize_first(
|
||||
input_texture, tex_uv - v_step).rgb;
|
||||
const float3 next_line = tex2D_linearize_first(
|
||||
input_texture, tex_uv + v_step).rgb;
|
||||
const float3 interpolated_line = 0.5 * (last_line + next_line);
|
||||
// If we're interlacing, determine which field curr_line is in:
|
||||
const float modulus = VAR.interlaced + 1.0;
|
||||
const float field_offset =
|
||||
fmod(FrameCount + float(interlace_bff), modulus);
|
||||
const float curr_line_texel = tex_uv.y / NormalizedNativePixelSize.y;
|
||||
// Use under_half to fix a rounding bug around exact texel locations.
|
||||
const float line_num_last = floor(curr_line_texel - under_half);
|
||||
const float wrong_field = fmod(line_num_last + field_offset, modulus);
|
||||
// Select the correct color, and output the result:
|
||||
const float3 color = lerp(curr_line, interpolated_line, wrong_field);
|
||||
return encode_output(float4(color, 1.0));
|
||||
}
|
||||
else
|
||||
{
|
||||
return encode_output(tex2D_linearize_first(input_texture, VAR.tex_uv));
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,130 @@
|
|||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
||||
|
||||
#include "../include/user-settings.fxh"
|
||||
#include "../include/derived-settings-and-constants.fxh"
|
||||
#include "../include/bind-shader-params.fxh"
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "../include/phosphor-mask-resizing.fxh"
|
||||
|
||||
|
||||
///////////////////////////////// STRUCTURES /////////////////////////////////
|
||||
|
||||
struct out_vertex_p6
|
||||
{
|
||||
float2 src_tex_uv_wrap : TEXCOORD1;
|
||||
float2 tile_uv_wrap : TEXCOORD2;
|
||||
float2 resize_magnification_scale : TEXCOORD3;
|
||||
float2 src_dxdy : TEXCOORD4;
|
||||
float2 tile_size_uv : TEXCOORD5;
|
||||
float2 input_tiles_per_texture : TEXCOORD6;
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////// VERTEX SHADER ///////////////////////////////
|
||||
|
||||
// Vertex shader generating a triangle covering the entire screen
|
||||
void VS_Mask_Resize_Horizontal(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out out_vertex_p6 OUT)
|
||||
{
|
||||
texcoord.x = (id == 2) ? 2.0 : 0.0;
|
||||
texcoord.y = (id == 1) ? 2.0 : 0.0;
|
||||
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
|
||||
|
||||
float2 tex_uv = texcoord;
|
||||
|
||||
float2 texture_size = MASK_RESIZE_texture_size;
|
||||
float2 output_size = 0.0625*(VIEWPORT_SIZE);
|
||||
|
||||
// First estimate the viewport size (the user will get the wrong number of
|
||||
// triads if it's wrong and mask_specify_num_triads is 1.0/true).
|
||||
const float2 estimated_viewport_size =
|
||||
output_size / mask_resize_viewport_scale;
|
||||
// Find the final size of our resized phosphor mask tiles. We probably
|
||||
// estimated the viewport size and MASK_RESIZE output size differently last
|
||||
// pass, so do not swear they were the same. ;)
|
||||
const float2 mask_resize_tile_size = get_resized_mask_tile_size(
|
||||
estimated_viewport_size, output_size, false);
|
||||
|
||||
// We'll render resized tiles until filling the output FBO or meeting a
|
||||
// limit, so compute [wrapped] tile uv coords based on the output uv coords
|
||||
// and the number of tiles that will fit in the FBO.
|
||||
const float2 output_tiles_this_pass = output_size / mask_resize_tile_size;
|
||||
const float2 output_video_uv = tex_uv * texture_size / video_size;
|
||||
const float2 tile_uv_wrap = output_video_uv * output_tiles_this_pass;
|
||||
|
||||
// Get the texel size of an input tile and related values:
|
||||
const float2 input_tile_size = float2(min(
|
||||
mask_resize_src_lut_size.x, video_size.x), mask_resize_tile_size.y);
|
||||
const float2 tile_size_uv = input_tile_size / texture_size;
|
||||
const float2 input_tiles_per_texture = texture_size / input_tile_size;
|
||||
|
||||
// Derive [wrapped] texture uv coords from [wrapped] tile uv coords and
|
||||
// the tile size in uv coords, and save frac() for the fragment shader.
|
||||
const float2 src_tex_uv_wrap = tile_uv_wrap * tile_size_uv;
|
||||
|
||||
// Output the values we need, including the magnification scale and step:
|
||||
OUT.tile_uv_wrap = tile_uv_wrap;
|
||||
OUT.src_tex_uv_wrap = src_tex_uv_wrap;
|
||||
OUT.resize_magnification_scale = mask_resize_tile_size / input_tile_size;
|
||||
OUT.src_dxdy = float2(1.0/texture_size.x, 0.0);
|
||||
OUT.tile_size_uv = tile_size_uv;
|
||||
OUT.input_tiles_per_texture = input_tiles_per_texture;
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////// FRAGMENT SHADER //////////////////////////////
|
||||
|
||||
float4 PS_Mask_Resize_Horizontal(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in out_vertex_p6 VAR) : SV_Target
|
||||
{
|
||||
// The input contains one mask tile horizontally and a number vertically.
|
||||
// Resize the tile horizontally to its final screen size and repeat it
|
||||
// until drawing at least mask_resize_num_tiles, leaving it unchanged
|
||||
// vertically. Lanczos-resizing the phosphor mask achieves much sharper
|
||||
// results than mipmapping, outputting >= mask_resize_num_tiles makes for
|
||||
// easier tiled sampling later.
|
||||
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// Discard unneeded fragments in case our profile allows real branches.
|
||||
float2 texture_size = MASK_RESIZE_texture_size;
|
||||
const float2 tile_uv_wrap = VAR.tile_uv_wrap;
|
||||
if(get_mask_sample_mode() < 0.5 &&
|
||||
max(tile_uv_wrap.x, tile_uv_wrap.y) <= mask_resize_num_tiles)
|
||||
{
|
||||
const float src_dx = VAR.src_dxdy.x;
|
||||
const float2 src_tex_uv = frac(VAR.src_tex_uv_wrap);
|
||||
const float3 pixel_color = downsample_horizontal_sinc_tiled(MASK_RESIZE_VERTICAL,
|
||||
src_tex_uv, texture_size, VAR.src_dxdy.x,
|
||||
VAR.resize_magnification_scale.x, VAR.tile_size_uv.x);
|
||||
// The input LUT was linear RGB, and so is our output:
|
||||
return float4(pixel_color, 1.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
discard;
|
||||
}
|
||||
#else
|
||||
discard;
|
||||
return 1.0.xxxx;
|
||||
#endif
|
||||
}
|
||||
|
|
@ -0,0 +1,164 @@
|
|||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
||||
|
||||
#include "../include/user-settings.fxh"
|
||||
#include "../include/derived-settings-and-constants.fxh"
|
||||
#include "../include/bind-shader-params.fxh"
|
||||
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "../include/phosphor-mask-resizing.fxh"
|
||||
|
||||
|
||||
///////////////////////////////// STRUCTURES /////////////////////////////////
|
||||
|
||||
struct out_vertex_p5
|
||||
{
|
||||
float2 src_tex_uv_wrap : TEXCOORD1;
|
||||
float2 resize_magnification_scale : TEXCOORD2;
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////// VERTEX SHADER ///////////////////////////////
|
||||
|
||||
// Vertex shader generating a triangle covering the entire screen
|
||||
void VS_Mask_Resize_Vertical(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out out_vertex_p5 OUT)
|
||||
{
|
||||
texcoord.x = (id == 2) ? 2.0 : 0.0;
|
||||
texcoord.y = (id == 1) ? 2.0 : 0.0;
|
||||
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
|
||||
|
||||
float2 tex_uv = texcoord;
|
||||
|
||||
float2 texture_size = MASK_RESIZE_VERT_texture_size;
|
||||
float2 output_size = float2(64.0, 0.0625*((VIEWPORT_SIZE).y));
|
||||
|
||||
// First estimate the viewport size (the user will get the wrong number of
|
||||
// triads if it's wrong and mask_specify_num_triads is 1.0/true).
|
||||
const float viewport_y = output_size.y / mask_resize_viewport_scale.y;
|
||||
// Now get aspect_ratio from texture_size.
|
||||
// const float aspect_ratio = geom_aspect_ratio_x / geom_aspect_ratio_y;
|
||||
const float aspect_ratio = texture_size.x / texture_size.y;
|
||||
const float2 estimated_viewport_size =
|
||||
float2(viewport_y * aspect_ratio, viewport_y);
|
||||
// Estimate the output size of MASK_RESIZE (the next pass). The estimated
|
||||
// x component shouldn't matter, because we're not using the x result, and
|
||||
// we're not swearing it's correct (if we did, the x result would influence
|
||||
// the y result to maintain the tile aspect ratio).
|
||||
const float2 estimated_mask_resize_output_size =
|
||||
float2(output_size.y * aspect_ratio, output_size.y);
|
||||
// Find the final intended [y] size of our resized phosphor mask tiles,
|
||||
// then the tile size for the current pass (resize y only):
|
||||
const float2 mask_resize_tile_size = get_resized_mask_tile_size(
|
||||
estimated_viewport_size, estimated_mask_resize_output_size, false);
|
||||
const float2 pass_output_tile_size = float2(min(
|
||||
mask_resize_src_lut_size.x, output_size.x), mask_resize_tile_size.y);
|
||||
|
||||
// We'll render resized tiles until filling the output FBO or meeting a
|
||||
// limit, so compute [wrapped] tile uv coords based on the output uv coords
|
||||
// and the number of tiles that will fit in the FBO.
|
||||
const float2 output_tiles_this_pass = output_size / pass_output_tile_size;
|
||||
const float2 output_video_uv = tex_uv * texture_size / video_size;
|
||||
const float2 tile_uv_wrap = output_video_uv * output_tiles_this_pass;
|
||||
|
||||
// The input LUT is just a single mask tile, so texture uv coords are the
|
||||
// same as tile uv coords (save frac() for the fragment shader). The
|
||||
// magnification scale is also straightforward:
|
||||
OUT.src_tex_uv_wrap = tile_uv_wrap;
|
||||
OUT.resize_magnification_scale =
|
||||
pass_output_tile_size / mask_resize_src_lut_size;
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////// FRAGMENT SHADER //////////////////////////////
|
||||
|
||||
float4 PS_Mask_Resize_Vertical(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in out_vertex_p5 VAR) : SV_Target
|
||||
{
|
||||
// Resize the input phosphor mask tile to the final vertical size it will
|
||||
// appear on screen. Keep 1x horizontal size if possible (IN.output_size
|
||||
// >= mask_resize_src_lut_size), and otherwise linearly sample horizontally
|
||||
// to fit exactly one tile. Lanczos-resizing the phosphor mask achieves
|
||||
// much sharper results than mipmapping, and vertically resizing first
|
||||
// minimizes the total number of taps required. We output a number of
|
||||
// resized tiles >= mask_resize_num_tiles for easier tiled sampling later.
|
||||
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
// Discard unneeded fragments in case our profile allows real branches.
|
||||
const float2 tile_uv_wrap = VAR.src_tex_uv_wrap;
|
||||
if(get_mask_sample_mode() < 0.5 &&
|
||||
tile_uv_wrap.y <= mask_resize_num_tiles)
|
||||
{
|
||||
static const float src_dy = 1.0/mask_resize_src_lut_size.y;
|
||||
const float2 src_tex_uv = frac(VAR.src_tex_uv_wrap);
|
||||
float3 pixel_color;
|
||||
// If mask_type is static, this branch will be resolved statically.
|
||||
#ifdef PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
|
||||
if(mask_type < 0.5)
|
||||
{
|
||||
pixel_color = downsample_vertical_sinc_tiled(
|
||||
mask_grille_texture_large, src_tex_uv, mask_resize_src_lut_size,
|
||||
src_dy, VAR.resize_magnification_scale.y, 1.0);
|
||||
}
|
||||
else if(mask_type < 1.5)
|
||||
{
|
||||
pixel_color = downsample_vertical_sinc_tiled(
|
||||
mask_slot_texture_large, src_tex_uv, mask_resize_src_lut_size,
|
||||
src_dy, VAR.resize_magnification_scale.y, 1.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
pixel_color = downsample_vertical_sinc_tiled(
|
||||
mask_shadow_texture_large, src_tex_uv, mask_resize_src_lut_size,
|
||||
src_dy, VAR.resize_magnification_scale.y, 1.0);
|
||||
}
|
||||
#else
|
||||
if(mask_type < 0.5)
|
||||
{
|
||||
pixel_color = downsample_vertical_sinc_tiled(
|
||||
mask_grille_texture_small, src_tex_uv, mask_resize_src_lut_size,
|
||||
src_dy, VAR.resize_magnification_scale.y, 1.0);
|
||||
}
|
||||
else if(mask_type < 1.5)
|
||||
{
|
||||
pixel_color = downsample_vertical_sinc_tiled(
|
||||
mask_slot_texture_small, src_tex_uv, mask_resize_src_lut_size,
|
||||
src_dy, VAR.resize_magnification_scale.y, 1.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
pixel_color = downsample_vertical_sinc_tiled(
|
||||
mask_shadow_texture_small, src_tex_uv, mask_resize_src_lut_size,
|
||||
src_dy, VAR.resize_magnification_scale.y, 1.0);
|
||||
}
|
||||
#endif
|
||||
// The input LUT was linear RGB, and so is our output:
|
||||
return float4(pixel_color, 1.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
discard;
|
||||
}
|
||||
#else
|
||||
discard;
|
||||
return 1.0.xxxx;
|
||||
#endif
|
||||
}
|
||||
|
|
@ -0,0 +1,283 @@
|
|||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
|
||||
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
||||
|
||||
#include "../include/user-settings.fxh"
|
||||
#include "../include/derived-settings-and-constants.fxh"
|
||||
#include "../include/bind-shader-params.fxh"
|
||||
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
#include "../include/scanline-functions.fxh"
|
||||
#include "../include/phosphor-mask-resizing.fxh"
|
||||
#include "../include/bloom-functions.fxh"
|
||||
#include "../include/gamma-management.fxh"
|
||||
|
||||
|
||||
/////////////////////////////////// HELPERS //////////////////////////////////
|
||||
|
||||
float4 tex2Dtiled_mask_linearize(const sampler2D tex,
|
||||
const float2 tex_uv)
|
||||
{
|
||||
// If we're manually tiling a texture, anisotropic filtering can get
|
||||
// confused. One workaround is to just select the lowest mip level:
|
||||
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
||||
// TODO: Use tex2Dlod_linearize with a calculated mip level.
|
||||
return tex2Dlod_linearize(tex, float4(tex_uv, 0.0, 0.0));
|
||||
#else
|
||||
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
||||
return tex2Dbias_linearize(tex, float4(tex_uv, 0.0, -16.0));
|
||||
#else
|
||||
return tex2D_linearize(tex, tex_uv);
|
||||
#endif
|
||||
#endif
|
||||
#else
|
||||
return tex2D_linearize(tex, tex_uv);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////// STRUCTURES /////////////////////////////////
|
||||
|
||||
|
||||
struct out_vertex_p7
|
||||
{
|
||||
// Use explicit semantics so COLORx doesn't clamp values outside [0, 1].
|
||||
float2 video_uv : TEXCOORD1;
|
||||
float2 scanline_tex_uv : TEXCOORD2;
|
||||
float2 blur3x3_tex_uv : TEXCOORD3;
|
||||
float2 halation_tex_uv : TEXCOORD4;
|
||||
float2 scanline_texture_size_inv : TEXCOORD5;
|
||||
float4 mask_tile_start_uv_and_size : TEXCOORD6;
|
||||
float2 mask_tiles_per_screen : TEXCOORD7;
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////// VERTEX SHADER ///////////////////////////////
|
||||
|
||||
|
||||
// Vertex shader generating a triangle covering the entire screen
|
||||
void VS_Scanlines_Horizontal_Apply_Mask(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out out_vertex_p7 OUT)
|
||||
{
|
||||
texcoord.x = (id == 2) ? 2.0 : 0.0;
|
||||
texcoord.y = (id == 1) ? 2.0 : 0.0;
|
||||
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
|
||||
|
||||
float2 tex_uv = texcoord;
|
||||
|
||||
float2 texture_size = MASKED_SCANLINES_texture_size;
|
||||
float2 output_size = VIEWPORT_SIZE;
|
||||
|
||||
// Our various input textures use different coords.
|
||||
const float2 video_uv = tex_uv * texture_size/video_size;
|
||||
const float2 scanline_texture_size_inv =
|
||||
1.0.xx/VERTICAL_SCANLINES_texture_size;
|
||||
OUT.video_uv = video_uv;
|
||||
OUT.scanline_tex_uv = video_uv * VERTICAL_SCANLINES_video_size *
|
||||
scanline_texture_size_inv;
|
||||
OUT.blur3x3_tex_uv = video_uv * BLOOM_APPROX_video_size /
|
||||
BLOOM_APPROX_texture_size;
|
||||
OUT.halation_tex_uv = video_uv * HALATION_BLUR_video_size /
|
||||
HALATION_BLUR_texture_size;
|
||||
OUT.scanline_texture_size_inv = scanline_texture_size_inv;
|
||||
|
||||
// Get a consistent name for the final mask texture size. Sample mode 0
|
||||
// uses the manually resized mask, but ignore it if we never resized.
|
||||
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
const float mask_sample_mode = get_mask_sample_mode();
|
||||
const float2 mask_resize_texture_size = mask_sample_mode < 0.5 ?
|
||||
MASKED_SCANLINES_texture_size : mask_texture_large_size;
|
||||
const float2 mask_resize_video_size = mask_sample_mode < 0.5 ?
|
||||
MASKED_SCANLINES_video_size : mask_texture_large_size;
|
||||
#else
|
||||
const float2 mask_resize_texture_size = mask_texture_large_size;
|
||||
const float2 mask_resize_video_size = mask_texture_large_size;
|
||||
#endif
|
||||
// Compute mask tile dimensions, starting points, etc.:
|
||||
float2 mask_tiles_per_screen;
|
||||
OUT.mask_tile_start_uv_and_size = get_mask_sampling_parameters(
|
||||
mask_resize_texture_size, mask_resize_video_size, output_size,
|
||||
mask_tiles_per_screen);
|
||||
OUT.mask_tiles_per_screen = mask_tiles_per_screen;
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////// FRAGMENT SHADER //////////////////////////////
|
||||
|
||||
float4 PS_Scanlines_Horizontal_Apply_Mask(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in out_vertex_p7 VAR) : SV_Target
|
||||
{
|
||||
// This pass: Sample (misconverged?) scanlines to the final horizontal
|
||||
// resolution, apply halation (bouncing electrons), and apply the phosphor
|
||||
// mask. Fake a bloom if requested. Unless we fake a bloom, the output
|
||||
// will be dim from the scanline auto-dim, mask dimming, and low gamma.
|
||||
|
||||
// Horizontally sample the current row (a vertically interpolated scanline)
|
||||
// and account for horizontal convergence offsets, given in units of texels.
|
||||
// float2 VERTICAL_SCANLINES_texture_size = float2(1.0/NormalizedNativePixelSize.x, ViewportSize.y*BufferToViewportRatio.y);
|
||||
|
||||
float2 output_size = VIEWPORT_SIZE;
|
||||
|
||||
const float3 scanline_color_dim = sample_rgb_scanline_horizontal(
|
||||
VERTICAL_SCANLINES, VAR.scanline_tex_uv,
|
||||
VERTICAL_SCANLINES_texture_size, VAR.scanline_texture_size_inv);
|
||||
const float auto_dim_factor = levels_autodim_temp;
|
||||
|
||||
// Sample the phosphor mask:
|
||||
const float2 tile_uv_wrap = VAR.video_uv * VAR.mask_tiles_per_screen;
|
||||
const float2 mask_tex_uv = convert_phosphor_tile_uv_wrap_to_tex_uv(
|
||||
tile_uv_wrap, VAR.mask_tile_start_uv_and_size);
|
||||
float3 phosphor_mask_sample;
|
||||
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
||||
const bool sample_orig_luts = get_mask_sample_mode() > 0.5;
|
||||
#else
|
||||
static const bool sample_orig_luts = true;
|
||||
#endif
|
||||
if(sample_orig_luts)
|
||||
{
|
||||
// If mask_type is static, this branch will be resolved statically.
|
||||
if(mask_type < 0.5)
|
||||
{
|
||||
phosphor_mask_sample = tex2D_linearize(
|
||||
mask_grille_texture_large, mask_tex_uv).rgb;
|
||||
}
|
||||
else if(mask_type < 1.5)
|
||||
{
|
||||
phosphor_mask_sample = tex2D_linearize(
|
||||
mask_slot_texture_large, mask_tex_uv).rgb;
|
||||
}
|
||||
else
|
||||
{
|
||||
phosphor_mask_sample = tex2D_linearize(
|
||||
mask_shadow_texture_large, mask_tex_uv).rgb;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Sample the resized mask, and avoid tiling artifacts:
|
||||
phosphor_mask_sample = tex2Dtiled_mask_linearize(
|
||||
MASK_RESIZE, mask_tex_uv).rgb;
|
||||
}
|
||||
|
||||
// Sample the halation texture (auto-dim to match the scanlines), and
|
||||
// account for both horizontal and vertical convergence offsets, given
|
||||
// in units of texels horizontally and same-field scanlines vertically:
|
||||
const float3 halation_color = tex2D_linearize(
|
||||
HALATION_BLUR, VAR.halation_tex_uv).rgb;
|
||||
|
||||
// Apply halation: Halation models electrons flying around under the glass
|
||||
// and hitting the wrong phosphors (of any color). It desaturates, so
|
||||
// average the halation electrons to a scalar. Reduce the local scanline
|
||||
// intensity accordingly to conserve energy.
|
||||
const float3 halation_intensity_dim =
|
||||
dot(halation_color, auto_dim_factor.xxx/3.0).xxx;
|
||||
const float3 electron_intensity_dim = lerp(scanline_color_dim,
|
||||
halation_intensity_dim, halation_weight);
|
||||
|
||||
// Apply the phosphor mask:
|
||||
const float3 phosphor_emission_dim = electron_intensity_dim *
|
||||
phosphor_mask_sample;
|
||||
|
||||
#ifdef PHOSPHOR_BLOOM_FAKE
|
||||
// The BLOOM_APPROX pass approximates a blurred version of a masked
|
||||
// and scanlined image. It's usually used to compute the brightpass,
|
||||
// but we can also use it to fake the bloom stage entirely. Caveats:
|
||||
// 1.) A fake bloom is conceptually different, since we're mixing in a
|
||||
// fully blurred low-res image, and the biggest implication are:
|
||||
// 2.) If mask_amplify is incorrect, results deteriorate more quickly.
|
||||
// 3.) The inaccurate blurring hurts quality in high-contrast areas.
|
||||
// 4.) The bloom_underestimate_levels parameter seems less sensitive.
|
||||
// Reverse the auto-dimming and amplify to compensate for mask dimming:
|
||||
#define PHOSPHOR_BLOOM_FAKE_WITH_SIMPLE_BLEND
|
||||
#ifdef PHOSPHOR_BLOOM_FAKE_WITH_SIMPLE_BLEND
|
||||
static const float blur_contrast = 1.05;
|
||||
#else
|
||||
static const float blur_contrast = 1.0;
|
||||
#endif
|
||||
const float mask_amplify = get_mask_amplify();
|
||||
const float undim_factor = 1.0/auto_dim_factor;
|
||||
const float3 phosphor_emission =
|
||||
phosphor_emission_dim * undim_factor * mask_amplify;
|
||||
// Get a phosphor blur estimate, accounting for convergence offsets:
|
||||
const float3 electron_intensity = electron_intensity_dim * undim_factor;
|
||||
const float3 phosphor_blur_approx_soft = tex2D_linearize(
|
||||
BLOOM_APPROX, VAR.blur3x3_tex_uv).rgb;
|
||||
const float3 phosphor_blur_approx = lerp(phosphor_blur_approx_soft,
|
||||
electron_intensity, 0.1) * blur_contrast;
|
||||
// We could blend between phosphor_emission and phosphor_blur_approx,
|
||||
// solving for the minimum blend_ratio that avoids clipping past 1.0:
|
||||
// 1.0 >= total_intensity
|
||||
// 1.0 >= phosphor_emission * (1.0 - blend_ratio) +
|
||||
// phosphor_blur_approx * blend_ratio
|
||||
// blend_ratio = (phosphor_emission - 1.0)/
|
||||
// (phosphor_emission - phosphor_blur_approx);
|
||||
// However, this blurs far more than necessary, because it aims for
|
||||
// full brightness, not minimal blurring. To fix it, base blend_ratio
|
||||
// on a max area intensity only so it varies more smoothly:
|
||||
const float3 phosphor_blur_underestimate =
|
||||
phosphor_blur_approx * bloom_underestimate_levels;
|
||||
const float3 area_max_underestimate =
|
||||
phosphor_blur_underestimate * mask_amplify;
|
||||
#ifdef PHOSPHOR_BLOOM_FAKE_WITH_SIMPLE_BLEND
|
||||
const float3 blend_ratio_temp =
|
||||
(area_max_underestimate - 1.0.xxx) /
|
||||
(area_max_underestimate - phosphor_blur_underestimate);
|
||||
#else
|
||||
// Try doing it like an area-based brightpass. This is nearly
|
||||
// identical, but it's worth toying with the code in case I ever
|
||||
// find a way to make it look more like a real bloom. (I've had
|
||||
// some promising textures from combining an area-based blend ratio
|
||||
// for the phosphor blur and a more brightpass-like blend-ratio for
|
||||
// the phosphor emission, but I haven't found a way to make the
|
||||
// brightness correct across the whole color range, especially with
|
||||
// different bloom_underestimate_levels values.)
|
||||
const float desired_triad_size = lerp(mask_triad_size_desired,
|
||||
output_size.x/mask_num_triads_desired,
|
||||
mask_specify_num_triads);
|
||||
const float bloom_sigma = get_min_sigma_to_blur_triad(
|
||||
desired_triad_size, bloom_diff_thresh);
|
||||
const float center_weight = get_center_weight(bloom_sigma);
|
||||
const float3 max_area_contribution_approx =
|
||||
max(0.0.xxx, phosphor_blur_approx -
|
||||
center_weight * phosphor_emission);
|
||||
const float3 area_contrib_underestimate =
|
||||
bloom_underestimate_levels * max_area_contribution_approx;
|
||||
const float3 blend_ratio_temp =
|
||||
((1.0.xxx - area_contrib_underestimate) /
|
||||
area_max_underestimate - 1.0.xxx) / (center_weight - 1.0);
|
||||
#endif
|
||||
// Clamp blend_ratio in case it's out-of-range, but be SUPER careful:
|
||||
// min/max/clamp are BIZARRELY broken with lerp (optimization bug?),
|
||||
// and this redundant sequence avoids bugs, at least on nVidia cards:
|
||||
const float3 blend_ratio_clamped = max(clamp(blend_ratio_temp, 0.0, 1.0), 0.0);
|
||||
const float3 blend_ratio = lerp(blend_ratio_clamped, 1.0.xxx, bloom_excess);
|
||||
// Blend the blurred and unblurred images:
|
||||
const float3 phosphor_emission_unclipped =
|
||||
lerp(phosphor_emission, phosphor_blur_approx, blend_ratio);
|
||||
// Simulate refractive diffusion by reusing the halation sample.
|
||||
const float3 pixel_color = lerp(phosphor_emission_unclipped,
|
||||
halation_color, diffusion_weight);
|
||||
#else
|
||||
const float3 pixel_color = phosphor_emission_dim;
|
||||
#endif
|
||||
// Encode if necessary, and output.
|
||||
return encode_output(float4(pixel_color, 1.0));
|
||||
}
|
||||
|
|
@ -0,0 +1,241 @@
|
|||
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
||||
|
||||
// crt-royale: A full-featured CRT shader, with cheese.
|
||||
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
||||
//
|
||||
// This program is free software; you can redistribute it and/or modify it
|
||||
// under the terms of the GNU General Public License as published by the Free
|
||||
// Software Foundation; either version 2 of the License, or any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
// more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License along with
|
||||
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
||||
// Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
#undef FIRST_PASS
|
||||
////////////////////////////////// INCLUDES //////////////////////////////////
|
||||
|
||||
//#include "../include/user-settings.fxh"
|
||||
//#include "../include/derived-settings-and-constants.fxh"
|
||||
#include "../include/bind-shader-params.fxh"
|
||||
#include "../include/scanline-functions.fxh"
|
||||
//#include "../include/gamma-management.fxh"
|
||||
|
||||
///////////////////////////////// STRUCTURES /////////////////////////////////
|
||||
|
||||
struct out_vertex_p1
|
||||
{
|
||||
// Use explicit semantics so COLORx doesn't clamp values outside [0, 1].
|
||||
float2 tex_uv : TEXCOORD1;
|
||||
float2 uv_step : TEXCOORD2; // uv size of a texel (x) and scanline (y)
|
||||
float2 il_step_multiple : TEXCOORD3; // (1, 1) = progressive, (1, 2) = interlaced
|
||||
float pixel_height_in_scanlines : TEXCOORD4; // Height of an output pixel in scanlines
|
||||
};
|
||||
|
||||
|
||||
//////////////////////////////// VERTEX SHADER ///////////////////////////////
|
||||
|
||||
// Vertex shader generating a triangle covering the entire screen
|
||||
void VS_Scanlines_Vertical_Interlacing(in uint id : SV_VertexID, out float4 position : SV_Position, out float2 texcoord : TEXCOORD, out out_vertex_p1 OUT)
|
||||
{
|
||||
texcoord.x = (id == 2) ? 2.0 : 0.0;
|
||||
texcoord.y = (id == 1) ? 2.0 : 0.0;
|
||||
position = float4(texcoord * float2(2.0, -2.0) + float2(-1.0, 1.0), 0.0, 1.0);
|
||||
|
||||
OUT.tex_uv = texcoord;
|
||||
|
||||
float2 texture_size = VERTICAL_SCANLINES_texture_size;
|
||||
float2 output_size = float2(TEXTURE_SIZE.x, VIEWPORT_SIZE.y);
|
||||
|
||||
// Detect interlacing: il_step_multiple indicates the step multiple between
|
||||
// lines: 1 is for progressive sources, and 2 is for interlaced sources.
|
||||
// const float2 video_size = 1.0/NormalizedNativePixelSize;
|
||||
const float y_step = 1.0 + float(is_interlaced(video_size.y));
|
||||
OUT.il_step_multiple = float2(1.0, y_step);
|
||||
// Get the uv tex coords step between one texel (x) and scanline (y):
|
||||
OUT.uv_step = OUT.il_step_multiple / texture_size;
|
||||
|
||||
// If shader parameters are used, {min, max}_{sigma, shape} are runtime
|
||||
// values. Compute {sigma, shape}_range outside of scanline_contrib() so
|
||||
// they aren't computed once per scanline (6 times per fragment and up to
|
||||
// 18 times per vertex):
|
||||
/* const float sigma_range = max(beam_max_sigma, beam_min_sigma) -
|
||||
beam_min_sigma;
|
||||
const float shape_range = max(beam_max_shape, beam_min_shape) -
|
||||
beam_min_shape;
|
||||
*/
|
||||
// We need the pixel height in scanlines for antialiased/integral sampling:
|
||||
const float ph = (video_size.y / output_size.y) /
|
||||
OUT.il_step_multiple.y;
|
||||
OUT.pixel_height_in_scanlines = ph;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////// FRAGMENT SHADER //////////////////////////////
|
||||
|
||||
float4 PS_Scanlines_Vertical_Interlacing(float4 vpos: SV_Position, float2 vTexCoord : TEXCOORD, in out_vertex_p1 VAR) : SV_Target
|
||||
{
|
||||
// This pass: Sample multiple (misconverged?) scanlines to the final
|
||||
// vertical resolution. Temporarily auto-dim the output to avoid clipping.
|
||||
|
||||
// Read some attributes into local variables:
|
||||
const float2 texture_size = VERTICAL_SCANLINES_texture_size;
|
||||
const float2 texture_size_inv = 1.0/texture_size;
|
||||
const float2 uv_step = VAR.uv_step;
|
||||
const float2 il_step_multiple = VAR.il_step_multiple;
|
||||
const float frame_count = FrameCount;
|
||||
const float ph = VAR.pixel_height_in_scanlines;
|
||||
|
||||
// Get the uv coords of the previous scanline (in this field), and the
|
||||
// scanline's distance from this sample, in scanlines.
|
||||
float dist;
|
||||
const float2 scanline_uv = get_last_scanline_uv(VAR.tex_uv, texture_size,
|
||||
texture_size_inv, il_step_multiple, frame_count, dist);
|
||||
|
||||
// Consider 2, 3, 4, or 6 scanlines numbered 0-5: The previous and next
|
||||
// scanlines are numbered 2 and 3. Get scanline colors colors (ignore
|
||||
// horizontal sampling, since since IN.output_size.x = video_size.x).
|
||||
// NOTE: Anisotropic filtering creates interlacing artifacts, which is why
|
||||
// ORIG_LINEARIZED bobbed any interlaced input before this pass.
|
||||
const float2 v_step = float2(0.0, uv_step.y);
|
||||
const float3 scanline2_color = tex2D_linearize(ORIG_LINEARIZED, scanline_uv).rgb;
|
||||
const float3 scanline3_color =
|
||||
tex2D_linearize(ORIG_LINEARIZED, scanline_uv + v_step).rgb;
|
||||
float3 scanline0_color, scanline1_color, scanline4_color, scanline5_color,
|
||||
scanline_outside_color;
|
||||
float dist_round;
|
||||
// Use scanlines 0, 1, 4, and 5 for a total of 6 scanlines:
|
||||
if(beam_num_scanlines > 5.5)
|
||||
{
|
||||
scanline1_color =
|
||||
tex2D_linearize(ORIG_LINEARIZED, scanline_uv - v_step).rgb;
|
||||
scanline4_color =
|
||||
tex2D_linearize(ORIG_LINEARIZED, scanline_uv + 2.0 * v_step).rgb;
|
||||
scanline0_color =
|
||||
tex2D_linearize(ORIG_LINEARIZED, scanline_uv - 2.0 * v_step).rgb;
|
||||
scanline5_color =
|
||||
tex2D_linearize(ORIG_LINEARIZED, scanline_uv + 3.0 * v_step).rgb;
|
||||
}
|
||||
// Use scanlines 1, 4, and either 0 or 5 for a total of 5 scanlines:
|
||||
else if(beam_num_scanlines > 4.5)
|
||||
{
|
||||
scanline1_color =
|
||||
tex2D_linearize(ORIG_LINEARIZED, scanline_uv - v_step).rgb;
|
||||
scanline4_color =
|
||||
tex2D_linearize(ORIG_LINEARIZED, scanline_uv + 2.0 * v_step).rgb;
|
||||
// dist is in [0, 1]
|
||||
dist_round = round(dist);
|
||||
const float2 sample_0_or_5_uv_off =
|
||||
lerp(-2.0 * v_step, 3.0 * v_step, dist_round);
|
||||
// Call this "scanline_outside_color" to cope with the conditional
|
||||
// scanline number:
|
||||
scanline_outside_color = tex2D_linearize(
|
||||
ORIG_LINEARIZED, scanline_uv + sample_0_or_5_uv_off).rgb;
|
||||
}
|
||||
// Use scanlines 1 and 4 for a total of 4 scanlines:
|
||||
else if(beam_num_scanlines > 3.5)
|
||||
{
|
||||
scanline1_color =
|
||||
tex2D_linearize(ORIG_LINEARIZED, scanline_uv - v_step).rgb;
|
||||
scanline4_color =
|
||||
tex2D_linearize(ORIG_LINEARIZED, scanline_uv + 2.0 * v_step).rgb;
|
||||
}
|
||||
// Use scanline 1 or 4 for a total of 3 scanlines:
|
||||
else if(beam_num_scanlines > 2.5)
|
||||
{
|
||||
// dist is in [0, 1]
|
||||
dist_round = round(dist);
|
||||
const float2 sample_1or4_uv_off =
|
||||
lerp(-v_step, 2.0 * v_step, dist_round);
|
||||
scanline_outside_color = tex2D_linearize(
|
||||
ORIG_LINEARIZED, scanline_uv + sample_1or4_uv_off).rgb;
|
||||
}
|
||||
|
||||
// Compute scanline contributions, accounting for vertical convergence.
|
||||
// Vertical convergence offsets are in units of current-field scanlines.
|
||||
// dist2 means "positive sample distance from scanline 2, in scanlines:"
|
||||
float3 dist2 = dist.xxx;
|
||||
if(beam_misconvergence)
|
||||
{
|
||||
const float3 convergence_offsets_vert_rgb =
|
||||
get_convergence_offsets_y_vector();
|
||||
dist2 = dist.xxx - convergence_offsets_vert_rgb;
|
||||
}
|
||||
// Calculate {sigma, shape}_range outside of scanline_contrib so it's only
|
||||
// done once per pixel (not 6 times) with runtime params. Don't reuse the
|
||||
// vertex shader calculations, so static versions can be constant-folded.
|
||||
const float sigma_range = max(beam_max_sigma, beam_min_sigma) -
|
||||
beam_min_sigma;
|
||||
const float shape_range = max(beam_max_shape, beam_min_shape) -
|
||||
beam_min_shape;
|
||||
// Calculate and sum final scanline contributions, starting with lines 2/3.
|
||||
// There is no normalization step, because we're not interpolating a
|
||||
// continuous signal. Instead, each scanline is an additive light source.
|
||||
const float3 scanline2_contrib = scanline_contrib(dist2,
|
||||
scanline2_color, ph, sigma_range, shape_range);
|
||||
const float3 scanline3_contrib = scanline_contrib(abs(1.0.xxx - dist2),
|
||||
scanline3_color, ph, sigma_range, shape_range);
|
||||
float3 scanline_intensity = scanline2_contrib + scanline3_contrib;
|
||||
if(beam_num_scanlines > 5.5)
|
||||
{
|
||||
const float3 scanline0_contrib =
|
||||
scanline_contrib(dist2 + 2.0.xxx, scanline0_color,
|
||||
ph, sigma_range, shape_range);
|
||||
const float3 scanline1_contrib =
|
||||
scanline_contrib(dist2 + 1.0.xxx, scanline1_color,
|
||||
ph, sigma_range, shape_range);
|
||||
const float3 scanline4_contrib =
|
||||
scanline_contrib(abs(2.0.xxx - dist2), scanline4_color,
|
||||
ph, sigma_range, shape_range);
|
||||
const float3 scanline5_contrib =
|
||||
scanline_contrib(abs(3.0.xxx - dist2), scanline5_color,
|
||||
ph, sigma_range, shape_range);
|
||||
scanline_intensity += scanline0_contrib + scanline1_contrib +
|
||||
scanline4_contrib + scanline5_contrib;
|
||||
}
|
||||
else if(beam_num_scanlines > 4.5)
|
||||
{
|
||||
const float3 scanline1_contrib =
|
||||
scanline_contrib(dist2 + 1.0.xxx, scanline1_color,
|
||||
ph, sigma_range, shape_range);
|
||||
const float3 scanline4_contrib =
|
||||
scanline_contrib(abs(2.0.xxx - dist2), scanline4_color,
|
||||
ph, sigma_range, shape_range);
|
||||
const float3 dist0or5 = lerp(
|
||||
dist2 + 2.0.xxx, 3.0.xxx - dist2, dist_round);
|
||||
const float3 scanline0or5_contrib = scanline_contrib(
|
||||
dist0or5, scanline_outside_color, ph, sigma_range, shape_range);
|
||||
scanline_intensity += scanline1_contrib + scanline4_contrib +
|
||||
scanline0or5_contrib;
|
||||
}
|
||||
else if(beam_num_scanlines > 3.5)
|
||||
{
|
||||
const float3 scanline1_contrib =
|
||||
scanline_contrib(dist2 + 1.0.xxx, scanline1_color,
|
||||
ph, sigma_range, shape_range);
|
||||
const float3 scanline4_contrib =
|
||||
scanline_contrib(abs(2.0.xxx - dist2), scanline4_color,
|
||||
ph, sigma_range, shape_range);
|
||||
scanline_intensity += scanline1_contrib + scanline4_contrib;
|
||||
}
|
||||
else if(beam_num_scanlines > 2.5)
|
||||
{
|
||||
const float3 dist1or4 = lerp(
|
||||
dist2 + 1.0.xxx, 2.0.xxx - dist2, dist_round);
|
||||
const float3 scanline1or4_contrib = scanline_contrib(
|
||||
dist1or4, scanline_outside_color, ph, sigma_range, shape_range);
|
||||
scanline_intensity += scanline1or4_contrib;
|
||||
}
|
||||
|
||||
// Auto-dim the image to avoid clipping, encode if necessary, and output.
|
||||
// My original idea was to compute a minimal auto-dim factor and put it in
|
||||
// the alpha channel, but it wasn't working, at least not reliably. This
|
||||
// is faster anyway, levels_autodim_temp = 0.5 isn't causing banding.
|
||||
return encode_output(float4(scanline_intensity * levels_autodim_temp, 1.0));
|
||||
}
|
||||
|
|
@ -32,12 +32,11 @@
|
|||
*/
|
||||
|
||||
|
||||
|
||||
uniform bool geom_curvature <
|
||||
ui_type = "radio";
|
||||
ui_category = "Geom Curvature";
|
||||
ui_label = "Geom Curvature Toggle";
|
||||
> = 1.0;
|
||||
> = 0.0;
|
||||
|
||||
uniform float geom_R <
|
||||
ui_type = "drag";
|
||||
|
|
After Width: | Height: | Size: 194 KiB |
After Width: | Height: | Size: 4.1 KiB |
After Width: | Height: | Size: 214 KiB |
After Width: | Height: | Size: 202 KiB |
After Width: | Height: | Size: 5.2 KiB |
After Width: | Height: | Size: 5.9 KiB |
After Width: | Height: | Size: 200 KiB |
After Width: | Height: | Size: 6.8 KiB |