Duckstation/src/core/mdec.cpp
2020-10-11 12:21:08 +10:00

742 lines
20 KiB
C++

#include "mdec.h"
#include "common/log.h"
#include "common/state_wrapper.h"
#include "cpu_core.h"
#include "dma.h"
#include "interrupt_controller.h"
#include "system.h"
#ifdef WITH_IMGUI
#include "imgui.h"
#endif
Log_SetChannel(MDEC);
MDEC g_mdec;
MDEC::MDEC() = default;
MDEC::~MDEC() = default;
void MDEC::Initialize()
{
m_block_copy_out_event = TimingEvents::CreateTimingEvent("MDEC Block Copy Out", TICKS_PER_BLOCK, TICKS_PER_BLOCK,
std::bind(&MDEC::CopyOutBlock, this), false);
m_total_blocks_decoded = 0;
Reset();
}
void MDEC::Shutdown()
{
m_block_copy_out_event.reset();
}
void MDEC::Reset()
{
m_block_copy_out_event->Deactivate();
SoftReset();
}
bool MDEC::DoState(StateWrapper& sw)
{
sw.Do(&m_status.bits);
sw.Do(&m_enable_dma_in);
sw.Do(&m_enable_dma_out);
sw.Do(&m_data_in_fifo);
sw.Do(&m_data_out_fifo);
sw.Do(&m_state);
sw.Do(&m_remaining_halfwords);
sw.Do(&m_iq_uv);
sw.Do(&m_iq_y);
sw.Do(&m_scale_table);
sw.Do(&m_blocks);
sw.Do(&m_current_block);
sw.Do(&m_current_coefficient);
sw.Do(&m_current_q_scale);
sw.Do(&m_block_rgb);
bool block_copy_out_pending = HasPendingBlockCopyOut();
sw.Do(&block_copy_out_pending);
if (sw.IsReading())
m_block_copy_out_event->SetState(block_copy_out_pending);
return !sw.HasError();
}
u32 MDEC::ReadRegister(u32 offset)
{
switch (offset)
{
case 0:
return ReadDataRegister();
case 4:
{
Log_TracePrintf("MDEC status register -> 0x%08X", m_status.bits);
return m_status.bits;
}
default:
{
Log_ErrorPrintf("Unknown MDEC register read: 0x%08X", offset);
return UINT32_C(0xFFFFFFFF);
}
}
}
void MDEC::WriteRegister(u32 offset, u32 value)
{
switch (offset)
{
case 0:
{
WriteCommandRegister(value);
return;
}
case 4:
{
Log_DebugPrintf("MDEC control register <- 0x%08X", value);
const ControlRegister cr{value};
if (cr.reset)
SoftReset();
m_enable_dma_in = cr.enable_dma_in;
m_enable_dma_out = cr.enable_dma_out;
Execute();
return;
}
default:
{
Log_ErrorPrintf("Unknown MDEC register write: 0x%08X <- 0x%08X", offset, value);
return;
}
}
}
void MDEC::DMARead(u32* words, u32 word_count)
{
if (m_data_out_fifo.GetSize() < word_count)
{
Log_WarningPrintf("Insufficient data in output FIFO (requested %u, have %u)", word_count,
m_data_out_fifo.GetSize());
}
const u32 words_to_read = std::min(word_count, m_data_out_fifo.GetSize());
if (words_to_read > 0)
{
m_data_out_fifo.PopRange(words, words_to_read);
words += words_to_read;
word_count -= words_to_read;
}
Log_DebugPrintf("DMA read complete, %u bytes left", m_data_out_fifo.GetSize() * sizeof(u32));
if (m_data_out_fifo.IsEmpty())
Execute();
}
void MDEC::DMAWrite(const u32* words, u32 word_count)
{
if (m_data_in_fifo.GetSpace() < (word_count * 2))
{
Log_WarningPrintf("Input FIFO overflow (writing %u, space %u)", word_count * 2, m_data_in_fifo.GetSpace());
}
const u32 halfwords_to_write = std::min(word_count * 2, m_data_in_fifo.GetSpace() & ~u32(2));
m_data_in_fifo.PushRange(reinterpret_cast<const u16*>(words), halfwords_to_write);
Execute();
}
bool MDEC::HasPendingBlockCopyOut() const
{
return m_block_copy_out_event->IsActive();
}
void MDEC::SoftReset()
{
m_status.bits = 0;
m_enable_dma_in = false;
m_enable_dma_out = false;
m_data_in_fifo.Clear();
m_data_out_fifo.Clear();
m_state = State::Idle;
m_remaining_halfwords = 0;
m_current_block = 0;
m_current_coefficient = 64;
m_current_q_scale = 0;
m_block_copy_out_event->Deactivate();
UpdateStatus();
}
void MDEC::ResetDecoder()
{
m_current_block = 0;
m_current_coefficient = 64;
m_current_q_scale = 0;
}
void MDEC::UpdateStatus()
{
m_status.data_out_fifo_empty = m_data_out_fifo.IsEmpty();
m_status.data_in_fifo_full = m_data_in_fifo.IsFull();
m_status.command_busy = (m_state != State::Idle);
m_status.parameter_words_remaining = Truncate16((m_remaining_halfwords / 2) - 1);
m_status.current_block = (m_current_block + 4) % NUM_BLOCKS;
// we always want data in if it's enabled
const bool data_in_request = m_enable_dma_in && m_data_in_fifo.GetSpace() >= (32 * 2);
m_status.data_in_request = data_in_request;
g_dma.SetRequest(DMA::Channel::MDECin, data_in_request);
// we only want to send data out if we have some in the fifo
const bool data_out_request = m_enable_dma_out && !m_data_out_fifo.IsEmpty();
m_status.data_out_request = data_out_request;
g_dma.SetRequest(DMA::Channel::MDECout, data_out_request);
}
u32 MDEC::ReadDataRegister()
{
if (m_data_out_fifo.IsEmpty())
{
// Stall the CPU until we're done processing.
if (HasPendingBlockCopyOut())
{
Log_DevPrint("MDEC data out FIFO empty on read - stalling CPU");
CPU::AddPendingTicks(m_block_copy_out_event->GetTicksUntilNextExecution());
}
else
{
Log_WarningPrintf("MDEC data out FIFO empty on read and no data processing");
return UINT32_C(0xFFFFFFFF);
}
}
const u32 value = m_data_out_fifo.Pop();
if (m_data_out_fifo.IsEmpty())
Execute();
else
UpdateStatus();
return value;
}
void MDEC::WriteCommandRegister(u32 value)
{
Log_TracePrintf("MDEC command/data register <- 0x%08X", value);
m_data_in_fifo.Push(Truncate16(value));
m_data_in_fifo.Push(Truncate16(value >> 16));
Execute();
}
void MDEC::Execute()
{
for (;;)
{
switch (m_state)
{
case State::Idle:
{
if (m_data_in_fifo.GetSize() < 2)
goto finished;
// first word
const CommandWord cw{ZeroExtend32(m_data_in_fifo.Peek(0)) | (ZeroExtend32(m_data_in_fifo.Peek(1)) << 16)};
m_status.data_output_depth = cw.data_output_depth;
m_status.data_output_signed = cw.data_output_signed;
m_status.data_output_bit15 = cw.data_output_bit15;
m_data_in_fifo.Remove(2);
m_data_out_fifo.Clear();
u32 num_words;
State new_state;
switch (cw.command)
{
case Command::DecodeMacroblock:
num_words = ZeroExtend32(cw.parameter_word_count.GetValue());
new_state = State::DecodingMacroblock;
break;
case Command::SetIqTab:
num_words = 16 + (((cw.bits & 1) != 0) ? 16 : 0);
new_state = State::SetIqTable;
break;
case Command::SetScale:
num_words = 32;
new_state = State::SetScaleTable;
break;
default:
Panic("Unknown command");
num_words = 0;
new_state = State::Idle;
break;
}
Log_DebugPrintf("MDEC command: 0x%08X (%u, %u words in parameter, %u expected)", cw.bits,
ZeroExtend32(static_cast<u8>(cw.command.GetValue())),
ZeroExtend32(cw.parameter_word_count.GetValue()), num_words);
m_remaining_halfwords = num_words * 2;
m_state = new_state;
UpdateStatus();
continue;
}
case State::DecodingMacroblock:
{
if (HandleDecodeMacroblockCommand())
{
// we should be writing out now
Assert(m_state == State::WritingMacroblock);
goto finished;
}
if (m_remaining_halfwords == 0 && m_current_block != NUM_BLOCKS)
{
// expecting data, but nothing more will be coming. bail out
ResetDecoder();
m_state = State::Idle;
continue;
}
goto finished;
}
case State::WritingMacroblock:
{
// this gets executed via the event, so if we get here, wait.
goto finished;
}
case State::SetIqTable:
{
if (m_data_in_fifo.GetSize() < m_remaining_halfwords)
goto finished;
HandleSetQuantTableCommand();
m_state = State::Idle;
UpdateStatus();
continue;
}
case State::SetScaleTable:
{
if (m_data_in_fifo.GetSize() < m_remaining_halfwords)
goto finished;
HandleSetScaleCommand();
m_state = State::Idle;
UpdateStatus();
continue;
}
default:
UnreachableCode();
return;
}
}
finished:
// if we get here, it's because the FIFO is now empty
UpdateStatus();
}
bool MDEC::HandleDecodeMacroblockCommand()
{
if (m_status.data_output_depth <= DataOutputDepth_8Bit)
return DecodeMonoMacroblock();
else
return DecodeColoredMacroblock();
}
bool MDEC::DecodeMonoMacroblock()
{
// TODO: This should guard the output not the input
if (!m_data_out_fifo.IsEmpty())
return false;
if (!rl_decode_block(m_blocks[0].data(), m_iq_y.data()))
return false;
IDCT(m_blocks[0].data());
Log_DebugPrintf("Decoded mono macroblock, %u words remaining", m_remaining_halfwords / 2);
ResetDecoder();
m_state = State::WritingMacroblock;
y_to_mono(m_blocks[0]);
ScheduleBlockCopyOut(TICKS_PER_BLOCK);
m_total_blocks_decoded++;
return true;
}
bool MDEC::DecodeColoredMacroblock()
{
for (; m_current_block < NUM_BLOCKS; m_current_block++)
{
if (!rl_decode_block(m_blocks[m_current_block].data(), (m_current_block >= 2) ? m_iq_y.data() : m_iq_uv.data()))
return false;
IDCT(m_blocks[m_current_block].data());
}
if (!m_data_out_fifo.IsEmpty())
return false;
// done decoding
Log_DebugPrintf("Decoded colored macroblock, %u words remaining", m_remaining_halfwords / 2);
ResetDecoder();
m_state = State::WritingMacroblock;
yuv_to_rgb(0, 0, m_blocks[0], m_blocks[1], m_blocks[2]);
yuv_to_rgb(8, 0, m_blocks[0], m_blocks[1], m_blocks[3]);
yuv_to_rgb(0, 8, m_blocks[0], m_blocks[1], m_blocks[4]);
yuv_to_rgb(8, 8, m_blocks[0], m_blocks[1], m_blocks[5]);
m_total_blocks_decoded += 4;
ScheduleBlockCopyOut(TICKS_PER_BLOCK * 6);
return true;
}
void MDEC::ScheduleBlockCopyOut(TickCount ticks)
{
DebugAssert(!HasPendingBlockCopyOut());
Log_DebugPrintf("Scheduling block copy out in %d ticks", ticks);
m_block_copy_out_event->Schedule(ticks);
}
void MDEC::CopyOutBlock()
{
Assert(m_state == State::WritingMacroblock);
m_block_copy_out_event->Deactivate();
switch (m_status.data_output_depth)
{
case DataOutputDepth_4Bit:
{
const u32* in_ptr = m_block_rgb.data();
for (u32 i = 0; i < (64 / 8); i++)
{
u32 value = *(in_ptr++) >> 4;
value |= (*(in_ptr++) >> 4) << 4;
value |= (*(in_ptr++) >> 4) << 8;
value |= (*(in_ptr++) >> 4) << 12;
value |= (*(in_ptr++) >> 4) << 16;
value |= (*(in_ptr++) >> 4) << 20;
value |= (*(in_ptr++) >> 4) << 24;
value |= (*(in_ptr++) >> 4) << 28;
m_data_out_fifo.Push(value);
}
}
break;
case DataOutputDepth_8Bit:
{
const u32* in_ptr = m_block_rgb.data();
for (u32 i = 0; i < (64 / 4); i++)
{
u32 value = *in_ptr++;
value |= *in_ptr++ << 8;
value |= *in_ptr++ << 16;
value |= *in_ptr++ << 24;
m_data_out_fifo.Push(value);
}
}
break;
case DataOutputDepth_24Bit:
{
// pack tightly
u32 index = 0;
u32 state = 0;
u32 rgb = 0;
while (index < m_block_rgb.size())
{
switch (state)
{
case 0:
rgb = m_block_rgb[index++]; // RGB-
state = 1;
break;
case 1:
rgb |= (m_block_rgb[index] & 0xFF) << 24; // RGBR
m_data_out_fifo.Push(rgb);
rgb = m_block_rgb[index] >> 8; // GB--
index++;
state = 2;
break;
case 2:
rgb |= m_block_rgb[index] << 16; // GBRG
m_data_out_fifo.Push(rgb);
rgb = m_block_rgb[index] >> 16; // B---
index++;
state = 3;
break;
case 3:
rgb |= m_block_rgb[index] << 8; // BRGB
m_data_out_fifo.Push(rgb);
index++;
state = 0;
break;
}
}
break;
}
case DataOutputDepth_15Bit:
{
const u16 a = ZeroExtend16(m_status.data_output_bit15.GetValue());
for (u32 i = 0; i < static_cast<u32>(m_block_rgb.size());)
{
u32 color = m_block_rgb[i++];
u16 r = Truncate16((color >> 3) & 0x1Fu);
u16 g = Truncate16((color >> 11) & 0x1Fu);
u16 b = Truncate16((color >> 19) & 0x1Fu);
const u16 color15a = r | (g << 5) | (b << 10) | (a << 15);
color = m_block_rgb[i++];
r = Truncate16((color >> 3) & 0x1Fu);
g = Truncate16((color >> 11) & 0x1Fu);
b = Truncate16((color >> 19) & 0x1Fu);
const u16 color15b = r | (g << 5) | (b << 10) | (a << 15);
m_data_out_fifo.Push(ZeroExtend32(color15a) | (ZeroExtend32(color15b) << 16));
}
}
break;
default:
break;
}
Log_DebugPrintf("Block copied out, fifo size = %u (%u bytes)", m_data_out_fifo.GetSize(),
m_data_out_fifo.GetSize() * sizeof(u32));
// if we've copied out all blocks, command is complete
m_state = (m_remaining_halfwords == 0) ? State::Idle : State::DecodingMacroblock;
Execute();
}
static constexpr std::array<u8, 64> zagzig = {{0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63}};
bool MDEC::rl_decode_block(s16* blk, const u8* qt)
{
if (m_current_coefficient == 64)
{
std::fill_n(blk, 64, s16(0));
// skip padding at start
u16 n;
for (;;)
{
if (m_data_in_fifo.IsEmpty() || m_remaining_halfwords == 0)
return false;
n = m_data_in_fifo.Pop();
m_remaining_halfwords--;
if (n == 0xFE00)
continue;
else
break;
}
m_current_coefficient = 0;
m_current_q_scale = (n >> 10) & 0x3F;
s32 val =
SignExtendN<10, s32>(static_cast<s32>(n & 0x3FF)) * static_cast<s32>(ZeroExtend32(qt[m_current_coefficient]));
if (m_current_q_scale == 0)
val = SignExtendN<10, s32>(static_cast<s32>(n & 0x3FF)) * 2;
val = std::clamp(val, -0x400, 0x3FF);
if (m_current_q_scale > 0)
blk[zagzig[m_current_coefficient]] = static_cast<s16>(val);
else if (m_current_q_scale == 0)
blk[m_current_coefficient] = static_cast<s16>(val);
}
while (!m_data_in_fifo.IsEmpty() && m_remaining_halfwords > 0)
{
u16 n = m_data_in_fifo.Pop();
m_remaining_halfwords--;
m_current_coefficient += ((n >> 10) & 0x3F) + 1;
if (m_current_coefficient >= 64)
{
m_current_coefficient = 64;
return true;
}
s32 val = (SignExtendN<10, s32>(static_cast<s32>(n & 0x3FF)) *
static_cast<s32>(ZeroExtend32(qt[m_current_coefficient])) * static_cast<s32>(m_current_q_scale) +
4) /
8;
if (m_current_q_scale == 0)
val = SignExtendN<10, s32>(static_cast<s32>(n & 0x3FF)) * 2;
val = std::clamp(val, -0x400, 0x3FF);
// val = val * static_cast<s32>(ZeroExtend32(scalezag[i]));
if (m_current_q_scale > 0)
blk[zagzig[m_current_coefficient]] = static_cast<s16>(val);
else if (m_current_q_scale == 0)
blk[m_current_coefficient] = static_cast<s16>(val);
}
return false;
}
void MDEC::IDCT(s16* blk)
{
std::array<s64, 64> temp_buffer;
for (u32 x = 0; x < 8; x++)
{
for (u32 y = 0; y < 8; y++)
{
s64 sum = 0;
for (u32 u = 0; u < 8; u++)
sum += s32(blk[u * 8 + x]) * s32(m_scale_table[u * 8 + y]);
temp_buffer[x + y * 8] = sum;
}
}
for (u32 x = 0; x < 8; x++)
{
for (u32 y = 0; y < 8; y++)
{
s64 sum = 0;
for (u32 u = 0; u < 8; u++)
sum += s64(temp_buffer[u + y * 8]) * s32(m_scale_table[u * 8 + x]);
blk[x + y * 8] =
static_cast<s16>(std::clamp<s32>(SignExtendN<9, s32>((sum >> 32) + ((sum >> 31) & 1)), -128, 127));
}
}
}
void MDEC::yuv_to_rgb(u32 xx, u32 yy, const std::array<s16, 64>& Crblk, const std::array<s16, 64>& Cbblk,
const std::array<s16, 64>& Yblk)
{
for (u32 y = 0; y < 8; y++)
{
for (u32 x = 0; x < 8; x++)
{
s16 R = Crblk[((x + xx) / 2) + ((y + yy) / 2) * 8];
s16 B = Cbblk[((x + xx) / 2) + ((y + yy) / 2) * 8];
s16 G = static_cast<s16>((-0.3437f * static_cast<float>(B)) + (-0.7143f * static_cast<float>(R)));
R = static_cast<s16>(1.402f * static_cast<float>(R));
B = static_cast<s16>(1.772f * static_cast<float>(B));
s16 Y = Yblk[x + y * 8];
R = static_cast<s16>(std::clamp(static_cast<int>(Y) + R, -128, 127));
G = static_cast<s16>(std::clamp(static_cast<int>(Y) + G, -128, 127));
B = static_cast<s16>(std::clamp(static_cast<int>(Y) + B, -128, 127));
// TODO: Signed output
R += 128;
G += 128;
B += 128;
m_block_rgb[(x + xx) + ((y + yy) * 16)] = ZeroExtend32(static_cast<u16>(R)) |
(ZeroExtend32(static_cast<u16>(G)) << 8) |
(ZeroExtend32(static_cast<u16>(B)) << 16);
}
}
}
void MDEC::y_to_mono(const std::array<s16, 64>& Yblk)
{
for (u32 i = 0; i < 64; i++)
{
s16 Y = Yblk[i];
Y = SignExtendN<10, s16>(Y);
Y = std::clamp<s16>(Y, -128, 127);
Y += 128;
m_block_rgb[i] = static_cast<u32>(Y) & 0xFF;
}
}
void MDEC::HandleSetQuantTableCommand()
{
DebugAssert(m_remaining_halfwords >= 32);
// TODO: Remove extra copies..
std::array<u16, 32> packed_data;
m_data_in_fifo.PopRange(packed_data.data(), static_cast<u32>(packed_data.size()));
m_remaining_halfwords -= 32;
std::memcpy(m_iq_y.data(), packed_data.data(), m_iq_y.size());
if (m_remaining_halfwords > 0)
{
DebugAssert(m_remaining_halfwords >= 32);
m_data_in_fifo.PopRange(packed_data.data(), static_cast<u32>(packed_data.size()));
std::memcpy(m_iq_uv.data(), packed_data.data(), m_iq_uv.size());
}
}
void MDEC::HandleSetScaleCommand()
{
DebugAssert(m_remaining_halfwords == 64);
// TODO: Remove extra copies..
std::array<u16, 64> packed_data;
m_data_in_fifo.PopRange(packed_data.data(), static_cast<u32>(packed_data.size()));
m_remaining_halfwords -= 32;
std::memcpy(m_scale_table.data(), packed_data.data(), m_scale_table.size() * sizeof(s16));
}
void MDEC::DrawDebugStateWindow()
{
#ifdef WITH_IMGUI
const float framebuffer_scale = ImGui::GetIO().DisplayFramebufferScale.x;
ImGui::SetNextWindowSize(ImVec2(300.0f * framebuffer_scale, 350.0f * framebuffer_scale), ImGuiCond_FirstUseEver);
if (!ImGui::Begin("MDEC State", &g_settings.debugging.show_mdec_state))
{
ImGui::End();
return;
}
static constexpr std::array<const char*, 5> state_names = {
{"None", "Decoding Macroblock", "Writing Macroblock", "SetIqTab", "SetScale"}};
static constexpr std::array<const char*, 4> output_depths = {{"4-bit", "8-bit", "24-bit", "15-bit"}};
static constexpr std::array<const char*, 7> block_names = {{"Crblk", "Cbblk", "Y1", "Y2", "Y3", "Y4", "Output"}};
ImGui::Text("Blocks Decoded: %u", m_total_blocks_decoded);
ImGui::Text("Data-In FIFO Size: %u (%u bytes)", m_data_in_fifo.GetSize(), m_data_in_fifo.GetSize() * 4);
ImGui::Text("Data-Out FIFO Size: %u (%u bytes)", m_data_out_fifo.GetSize(), m_data_out_fifo.GetSize() * 4);
ImGui::Text("DMA Enable: %s%s", m_enable_dma_in ? "In " : "", m_enable_dma_out ? "Out" : "");
ImGui::Text("Current State: %s", state_names[static_cast<u8>(m_state)]);
ImGui::Text("Current Block: %s", block_names[m_current_block]);
ImGui::Text("Current Coefficient: %u", m_current_coefficient);
if (ImGui::CollapsingHeader("Status", ImGuiTreeNodeFlags_DefaultOpen))
{
ImGui::Text("Data-Out FIFO Empty: %s", m_status.data_out_fifo_empty ? "Yes" : "No");
ImGui::Text("Data-In FIFO Full: %s", m_status.data_in_fifo_full ? "Yes" : "No");
ImGui::Text("Command Busy: %s", m_status.command_busy ? "Yes" : "No");
ImGui::Text("Data-In Request: %s", m_status.data_in_request ? "Yes" : "No");
ImGui::Text("Output Depth: %s", output_depths[static_cast<u8>(m_status.data_output_depth.GetValue())]);
ImGui::Text("Output Signed: %s", m_status.data_output_signed ? "Yes" : "No");
ImGui::Text("Output Bit 15: %u", ZeroExtend32(m_status.data_output_bit15.GetValue()));
ImGui::Text("Current Block: %u", ZeroExtend32(m_status.current_block.GetValue()));
ImGui::Text("Parameter Words Remaining: %d",
static_cast<s32>(SignExtend32(m_status.parameter_words_remaining.GetValue())));
}
ImGui::End();
#endif
}