Duckstation/src/util/vulkan_device.cpp

3170 lines
110 KiB
C++

// SPDX-FileCopyrightText: 2019-2023 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "vulkan_device.h"
#include "vulkan_builders.h"
#include "vulkan_pipeline.h"
#include "vulkan_stream_buffer.h"
#include "vulkan_swap_chain.h"
#include "vulkan_texture.h"
#include "core/host.h"
#include "common/align.h"
#include "common/assert.h"
#include "common/bitutils.h"
#include "common/file_system.h"
#include "common/log.h"
#include "common/path.h"
#include "common/scoped_guard.h"
#include "common/small_string.h"
#include "fmt/format.h"
#include <limits>
#include <mutex>
Log_SetChannel(VulkanDevice);
// TODO: VK_KHR_display.
#pragma pack(push, 4)
struct VK_PIPELINE_CACHE_HEADER
{
u32 header_length;
u32 header_version;
u32 vendor_id;
u32 device_id;
u8 uuid[VK_UUID_SIZE];
};
#pragma pack(pop)
// Tweakables
enum : u32
{
MAX_DRAW_CALLS_PER_FRAME = 2048,
MAX_COMBINED_IMAGE_SAMPLER_DESCRIPTORS_PER_FRAME = GPUDevice::MAX_TEXTURE_SAMPLERS * MAX_DRAW_CALLS_PER_FRAME,
MAX_DESCRIPTOR_SETS_PER_FRAME = MAX_DRAW_CALLS_PER_FRAME,
MAX_SAMPLER_DESCRIPTORS = 8192,
VERTEX_BUFFER_SIZE = 32 * 1024 * 1024,
INDEX_BUFFER_SIZE = 16 * 1024 * 1024,
VERTEX_UNIFORM_BUFFER_SIZE = 8 * 1024 * 1024,
FRAGMENT_UNIFORM_BUFFER_SIZE = 8 * 1024 * 1024,
TEXTURE_BUFFER_SIZE = 64 * 1024 * 1024,
UNIFORM_PUSH_CONSTANTS_STAGES = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
UNIFORM_PUSH_CONSTANTS_SIZE = 128,
MAX_UNIFORM_BUFFER_SIZE = 1024,
};
const std::array<VkFormat, static_cast<u32>(GPUTexture::Format::MaxCount)> VulkanDevice::TEXTURE_FORMAT_MAPPING = {
VK_FORMAT_UNDEFINED, // Unknown
VK_FORMAT_R8G8B8A8_UNORM, // RGBA8
VK_FORMAT_B8G8R8A8_UNORM, // BGRA8
VK_FORMAT_R5G6B5_UNORM_PACK16, // RGB565
VK_FORMAT_R5G5B5A1_UNORM_PACK16, // RGBA5551
VK_FORMAT_R8_UNORM, // R8
VK_FORMAT_D16_UNORM, // D16
VK_FORMAT_R16_UNORM, // R16
VK_FORMAT_R16_SFLOAT, // R16F
VK_FORMAT_R32_SINT, // R32I
VK_FORMAT_R32_UINT, // R32U
VK_FORMAT_R32_SFLOAT, // R32F
VK_FORMAT_R8G8_UNORM, // RG8
VK_FORMAT_R16G16_UNORM, // RG16
VK_FORMAT_R16G16_SFLOAT, // RG16F
VK_FORMAT_R32G32_SFLOAT, // RG32F
VK_FORMAT_R16G16B16A16_UNORM, // RGBA16
VK_FORMAT_R16G16B16A16_SFLOAT, // RGBA16F
VK_FORMAT_R32G32B32A32_SFLOAT, // RGBA32F
VK_FORMAT_A2R10G10B10_UNORM_PACK32, // RGB10A2
};
static constexpr VkClearValue s_present_clear_color = {{{0.0f, 0.0f, 0.0f, 1.0f}}};
#ifdef _DEBUG
static u32 s_debug_scope_depth = 0;
#endif
// We need to synchronize instance creation because of adapter enumeration from the UI thread.
static std::mutex s_instance_mutex;
VulkanDevice::VulkanDevice()
{
#ifdef _DEBUG
s_debug_scope_depth = 0;
#endif
}
VulkanDevice::~VulkanDevice()
{
Assert(m_device == VK_NULL_HANDLE);
}
GPUTexture::Format VulkanDevice::GetFormatForVkFormat(VkFormat format)
{
for (u32 i = 0; i < static_cast<u32>(std::size(TEXTURE_FORMAT_MAPPING)); i++)
{
if (TEXTURE_FORMAT_MAPPING[i] == format)
return static_cast<GPUTexture::Format>(i);
}
return GPUTexture::Format::Unknown;
}
VkInstance VulkanDevice::CreateVulkanInstance(const WindowInfo& wi, bool enable_debug_utils,
bool enable_validation_layer)
{
ExtensionList enabled_extensions;
if (!SelectInstanceExtensions(&enabled_extensions, wi, enable_debug_utils))
return VK_NULL_HANDLE;
// Remember to manually update this every release. We don't pull in svnrev.h here, because
// it's only the major/minor version, and rebuilding the file every time something else changes
// is unnecessary.
VkApplicationInfo app_info = {};
app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
app_info.pNext = nullptr;
app_info.pApplicationName = "DuckStation";
app_info.applicationVersion = VK_MAKE_VERSION(0, 1, 0);
app_info.pEngineName = "DuckStation";
app_info.engineVersion = VK_MAKE_VERSION(0, 1, 0);
app_info.apiVersion = VK_API_VERSION_1_1;
VkInstanceCreateInfo instance_create_info = {};
instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instance_create_info.pNext = nullptr;
instance_create_info.flags = 0;
instance_create_info.pApplicationInfo = &app_info;
instance_create_info.enabledExtensionCount = static_cast<uint32_t>(enabled_extensions.size());
instance_create_info.ppEnabledExtensionNames = enabled_extensions.data();
instance_create_info.enabledLayerCount = 0;
instance_create_info.ppEnabledLayerNames = nullptr;
// Enable debug layer on debug builds
if (enable_validation_layer)
{
static const char* layer_names[] = {"VK_LAYER_KHRONOS_validation"};
instance_create_info.enabledLayerCount = 1;
instance_create_info.ppEnabledLayerNames = layer_names;
}
VkInstance instance;
VkResult res = vkCreateInstance(&instance_create_info, nullptr, &instance);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateInstance failed: ");
return nullptr;
}
return instance;
}
bool VulkanDevice::SelectInstanceExtensions(ExtensionList* extension_list, const WindowInfo& wi,
bool enable_debug_utils)
{
u32 extension_count = 0;
VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: ");
return false;
}
if (extension_count == 0)
{
Log_ErrorPrintf("Vulkan: No extensions supported by instance.");
return false;
}
std::vector<VkExtensionProperties> available_extension_list(extension_count);
res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, available_extension_list.data());
DebugAssert(res == VK_SUCCESS);
auto SupportsExtension = [&](const char* name, bool required) {
if (std::find_if(available_extension_list.begin(), available_extension_list.end(),
[&](const VkExtensionProperties& properties) {
return !strcmp(name, properties.extensionName);
}) != available_extension_list.end())
{
Log_DevPrintf("Enabling extension: %s", name);
extension_list->push_back(name);
return true;
}
if (required)
Log_ErrorPrintf("Vulkan: Missing required extension %s.", name);
return false;
};
// Common extensions
if (wi.type != WindowInfo::Type::Surfaceless && !SupportsExtension(VK_KHR_SURFACE_EXTENSION_NAME, true))
return false;
#if defined(VK_USE_PLATFORM_WIN32_KHR)
if (wi.type == WindowInfo::Type::Win32 && !SupportsExtension(VK_KHR_WIN32_SURFACE_EXTENSION_NAME, true))
return false;
#endif
#if defined(VK_USE_PLATFORM_XLIB_KHR)
if (wi.type == WindowInfo::Type::X11 && !SupportsExtension(VK_KHR_XLIB_SURFACE_EXTENSION_NAME, true))
return false;
#endif
#if defined(VK_USE_PLATFORM_WAYLAND_KHR)
if (wi.type == WindowInfo::Type::Wayland && !SupportsExtension(VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME, true))
return false;
#endif
#if defined(VK_USE_PLATFORM_METAL_EXT)
if (wi.type == WindowInfo::Type::MacOS && !SupportsExtension(VK_EXT_METAL_SURFACE_EXTENSION_NAME, true))
return false;
#endif
// VK_EXT_debug_utils
if (enable_debug_utils && !SupportsExtension(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, false))
Log_WarningPrintf("Vulkan: Debug report requested, but extension is not available.");
// Needed for exclusive fullscreen control.
SupportsExtension(VK_KHR_GET_SURFACE_CAPABILITIES_2_EXTENSION_NAME, false);
return true;
}
VulkanDevice::GPUList VulkanDevice::EnumerateGPUs(VkInstance instance)
{
GPUList gpus;
u32 gpu_count = 0;
VkResult res = vkEnumeratePhysicalDevices(instance, &gpu_count, nullptr);
if ((res != VK_SUCCESS && res != VK_INCOMPLETE) || gpu_count == 0)
{
LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices (1) failed: ");
return gpus;
}
std::vector<VkPhysicalDevice> physical_devices(gpu_count);
res = vkEnumeratePhysicalDevices(instance, &gpu_count, physical_devices.data());
if (res == VK_INCOMPLETE)
{
Log_WarningPrintf("First vkEnumeratePhysicalDevices() call returned %zu devices, but second returned %u",
physical_devices.size(), gpu_count);
}
else if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices (2) failed: ");
return gpus;
}
// Maybe we lost a GPU?
if (gpu_count < physical_devices.size())
physical_devices.resize(gpu_count);
gpus.reserve(physical_devices.size());
for (VkPhysicalDevice device : physical_devices)
{
VkPhysicalDeviceProperties props = {};
vkGetPhysicalDeviceProperties(device, &props);
std::string gpu_name = props.deviceName;
// handle duplicate adapter names
if (std::any_of(gpus.begin(), gpus.end(), [&gpu_name](const auto& other) { return (gpu_name == other.second); }))
{
std::string original_adapter_name = std::move(gpu_name);
u32 current_extra = 2;
do
{
gpu_name = fmt::format("{} ({})", original_adapter_name, current_extra);
current_extra++;
} while (
std::any_of(gpus.begin(), gpus.end(), [&gpu_name](const auto& other) { return (gpu_name == other.second); }));
}
gpus.emplace_back(device, std::move(gpu_name));
}
return gpus;
}
bool VulkanDevice::SelectDeviceExtensions(ExtensionList* extension_list, bool enable_surface)
{
u32 extension_count = 0;
VkResult res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEnumerateDeviceExtensionProperties failed: ");
return false;
}
if (extension_count == 0)
{
Log_ErrorPrintf("Vulkan: No extensions supported by device.");
return false;
}
std::vector<VkExtensionProperties> available_extension_list(extension_count);
res =
vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, available_extension_list.data());
DebugAssert(res == VK_SUCCESS);
auto SupportsExtension = [&](const char* name, bool required) {
if (std::find_if(available_extension_list.begin(), available_extension_list.end(),
[&](const VkExtensionProperties& properties) {
return !strcmp(name, properties.extensionName);
}) != available_extension_list.end())
{
if (std::none_of(extension_list->begin(), extension_list->end(),
[&](const char* existing_name) { return (std::strcmp(existing_name, name) == 0); }))
{
Log_DevPrintf("Enabling extension: %s", name);
extension_list->push_back(name);
}
return true;
}
if (required)
Log_ErrorPrintf("Vulkan: Missing required extension %s.", name);
return false;
};
if (enable_surface && !SupportsExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, true))
return false;
m_optional_extensions.vk_ext_memory_budget = SupportsExtension(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME, false);
m_optional_extensions.vk_ext_rasterization_order_attachment_access =
SupportsExtension(VK_EXT_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_EXTENSION_NAME, false) ||
SupportsExtension(VK_ARM_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_EXTENSION_NAME, false);
m_optional_extensions.vk_ext_attachment_feedback_loop_layout =
SupportsExtension(VK_EXT_ATTACHMENT_FEEDBACK_LOOP_LAYOUT_EXTENSION_NAME, false);
m_optional_extensions.vk_khr_driver_properties = SupportsExtension(VK_KHR_DRIVER_PROPERTIES_EXTENSION_NAME, false);
m_optional_extensions.vk_khr_push_descriptor = SupportsExtension(VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME, false);
#ifdef _WIN32
m_optional_extensions.vk_ext_full_screen_exclusive =
enable_surface && SupportsExtension(VK_EXT_FULL_SCREEN_EXCLUSIVE_EXTENSION_NAME, false);
Log_InfoPrintf("VK_EXT_full_screen_exclusive is %s",
m_optional_extensions.vk_ext_full_screen_exclusive ? "supported" : "NOT supported");
#endif
return true;
}
bool VulkanDevice::SelectDeviceFeatures()
{
VkPhysicalDeviceFeatures available_features;
vkGetPhysicalDeviceFeatures(m_physical_device, &available_features);
// Enable the features we use.
m_device_features.dualSrcBlend = available_features.dualSrcBlend;
m_device_features.largePoints = available_features.largePoints;
m_device_features.wideLines = available_features.wideLines;
m_device_features.samplerAnisotropy = available_features.samplerAnisotropy;
m_device_features.sampleRateShading = available_features.sampleRateShading;
m_device_features.geometryShader = available_features.geometryShader;
return true;
}
bool VulkanDevice::CreateDevice(VkSurfaceKHR surface, bool enable_validation_layer)
{
u32 queue_family_count;
vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, nullptr);
if (queue_family_count == 0)
{
Log_ErrorPrintf("No queue families found on specified vulkan physical device.");
return false;
}
std::vector<VkQueueFamilyProperties> queue_family_properties(queue_family_count);
vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, queue_family_properties.data());
Log_DevPrintf("%u vulkan queue families", queue_family_count);
// Find graphics and present queues.
m_graphics_queue_family_index = queue_family_count;
m_present_queue_family_index = queue_family_count;
for (uint32_t i = 0; i < queue_family_count; i++)
{
VkBool32 graphics_supported = queue_family_properties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT;
if (graphics_supported)
{
m_graphics_queue_family_index = i;
// Quit now, no need for a present queue.
if (!surface)
{
break;
}
}
if (surface)
{
VkBool32 present_supported;
VkResult res = vkGetPhysicalDeviceSurfaceSupportKHR(m_physical_device, i, surface, &present_supported);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceSupportKHR failed: ");
return false;
}
if (present_supported)
{
m_present_queue_family_index = i;
}
// Prefer one queue family index that does both graphics and present.
if (graphics_supported && present_supported)
{
break;
}
}
}
if (m_graphics_queue_family_index == queue_family_count)
{
Log_ErrorPrintf("Vulkan: Failed to find an acceptable graphics queue.");
return false;
}
if (surface != VK_NULL_HANDLE && m_present_queue_family_index == queue_family_count)
{
Log_ErrorPrintf("Vulkan: Failed to find an acceptable present queue.");
return false;
}
VkDeviceCreateInfo device_info = {};
device_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
device_info.pNext = nullptr;
device_info.flags = 0;
device_info.queueCreateInfoCount = 0;
static constexpr float queue_priorities[] = {1.0f};
std::array<VkDeviceQueueCreateInfo, 2> queue_infos;
VkDeviceQueueCreateInfo& graphics_queue_info = queue_infos[device_info.queueCreateInfoCount++];
graphics_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
graphics_queue_info.pNext = nullptr;
graphics_queue_info.flags = 0;
graphics_queue_info.queueFamilyIndex = m_graphics_queue_family_index;
graphics_queue_info.queueCount = 1;
graphics_queue_info.pQueuePriorities = queue_priorities;
if (surface != VK_NULL_HANDLE && m_graphics_queue_family_index != m_present_queue_family_index)
{
VkDeviceQueueCreateInfo& present_queue_info = queue_infos[device_info.queueCreateInfoCount++];
present_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
present_queue_info.pNext = nullptr;
present_queue_info.flags = 0;
present_queue_info.queueFamilyIndex = m_present_queue_family_index;
present_queue_info.queueCount = 1;
present_queue_info.pQueuePriorities = queue_priorities;
}
device_info.pQueueCreateInfos = queue_infos.data();
ExtensionList enabled_extensions;
if (!SelectDeviceExtensions(&enabled_extensions, surface != VK_NULL_HANDLE))
return false;
device_info.enabledExtensionCount = static_cast<uint32_t>(enabled_extensions.size());
device_info.ppEnabledExtensionNames = enabled_extensions.data();
// Check for required features before creating.
if (!SelectDeviceFeatures())
return false;
device_info.pEnabledFeatures = &m_device_features;
// Enable debug layer on debug builds
if (enable_validation_layer)
{
static const char* layer_names[] = {"VK_LAYER_LUNARG_standard_validation"};
device_info.enabledLayerCount = 1;
device_info.ppEnabledLayerNames = layer_names;
}
VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT rasterization_order_access_feature = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_FEATURES_EXT, nullptr, VK_TRUE, VK_FALSE,
VK_FALSE};
VkPhysicalDeviceAttachmentFeedbackLoopLayoutFeaturesEXT attachment_feedback_loop_feature = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ATTACHMENT_FEEDBACK_LOOP_LAYOUT_FEATURES_EXT, nullptr, VK_TRUE};
if (m_optional_extensions.vk_ext_rasterization_order_attachment_access)
Vulkan::AddPointerToChain(&device_info, &rasterization_order_access_feature);
if (m_optional_extensions.vk_ext_attachment_feedback_loop_layout)
Vulkan::AddPointerToChain(&device_info, &attachment_feedback_loop_feature);
VkResult res = vkCreateDevice(m_physical_device, &device_info, nullptr, &m_device);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDevice failed: ");
return false;
}
// With the device created, we can fill the remaining entry points.
if (!Vulkan::LoadVulkanDeviceFunctions(m_device))
return false;
// Grab the graphics and present queues.
vkGetDeviceQueue(m_device, m_graphics_queue_family_index, 0, &m_graphics_queue);
if (surface)
vkGetDeviceQueue(m_device, m_present_queue_family_index, 0, &m_present_queue);
m_features.gpu_timing = (m_device_properties.limits.timestampComputeAndGraphics != 0 &&
queue_family_properties[m_graphics_queue_family_index].timestampValidBits > 0 &&
m_device_properties.limits.timestampPeriod > 0);
Log_DevPrintf("GPU timing is %s (TS=%u TS valid bits=%u, TS period=%f)",
m_features.gpu_timing ? "supported" : "not supported",
static_cast<u32>(m_device_properties.limits.timestampComputeAndGraphics),
queue_family_properties[m_graphics_queue_family_index].timestampValidBits,
m_device_properties.limits.timestampPeriod);
ProcessDeviceExtensions();
return true;
}
void VulkanDevice::ProcessDeviceExtensions()
{
// advanced feature checks
VkPhysicalDeviceFeatures2 features2 = {VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2, nullptr, {}};
VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesEXT rasterization_order_access_feature = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_FEATURES_EXT, nullptr, VK_FALSE, VK_FALSE,
VK_FALSE};
VkPhysicalDeviceAttachmentFeedbackLoopLayoutFeaturesEXT attachment_feedback_loop_feature = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ATTACHMENT_FEEDBACK_LOOP_LAYOUT_FEATURES_EXT, nullptr, VK_FALSE};
// add in optional feature structs
if (m_optional_extensions.vk_ext_rasterization_order_attachment_access)
Vulkan::AddPointerToChain(&features2, &rasterization_order_access_feature);
if (m_optional_extensions.vk_ext_attachment_feedback_loop_layout)
Vulkan::AddPointerToChain(&features2, &attachment_feedback_loop_feature);
// query
vkGetPhysicalDeviceFeatures2(m_physical_device, &features2);
// confirm we actually support it
m_optional_extensions.vk_ext_rasterization_order_attachment_access &=
(rasterization_order_access_feature.rasterizationOrderColorAttachmentAccess == VK_TRUE);
m_optional_extensions.vk_ext_attachment_feedback_loop_layout &=
(attachment_feedback_loop_feature.attachmentFeedbackLoopLayout == VK_TRUE);
VkPhysicalDeviceProperties2 properties2 = {VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2, nullptr, {}};
VkPhysicalDevicePushDescriptorPropertiesKHR push_descriptor_properties = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR, nullptr, 0u};
if (m_optional_extensions.vk_khr_driver_properties)
{
m_device_driver_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES;
Vulkan::AddPointerToChain(&properties2, &m_device_driver_properties);
}
if (m_optional_extensions.vk_khr_push_descriptor)
Vulkan::AddPointerToChain(&properties2, &push_descriptor_properties);
// query
vkGetPhysicalDeviceProperties2(m_physical_device, &properties2);
m_optional_extensions.vk_khr_push_descriptor &= (push_descriptor_properties.maxPushDescriptors >= 1);
Log_InfoPrintf("VK_EXT_memory_budget is %s",
m_optional_extensions.vk_ext_memory_budget ? "supported" : "NOT supported");
Log_InfoPrintf("VK_EXT_rasterization_order_attachment_access is %s",
m_optional_extensions.vk_ext_rasterization_order_attachment_access ? "supported" : "NOT supported");
Log_InfoPrintf("VK_EXT_attachment_feedback_loop_layout is %s",
m_optional_extensions.vk_ext_attachment_feedback_loop_layout ? "supported" : "NOT supported");
Log_InfoPrintf("VK_KHR_push_descriptor is %s",
m_optional_extensions.vk_khr_push_descriptor ? "supported" : "NOT supported");
}
bool VulkanDevice::CreateAllocator()
{
VmaAllocatorCreateInfo ci = {};
ci.vulkanApiVersion = VK_API_VERSION_1_1;
ci.flags = VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT;
ci.physicalDevice = m_physical_device;
ci.device = m_device;
ci.instance = m_instance;
if (m_optional_extensions.vk_ext_memory_budget)
ci.flags |= VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT;
// Limit usage of the DEVICE_LOCAL upload heap when we're using a debug device.
// On NVIDIA drivers, it results in frequently running out of device memory when trying to
// play back captures in RenderDoc, making life very painful. Re-BAR GPUs should be fine.
constexpr VkDeviceSize UPLOAD_HEAP_SIZE_THRESHOLD = 512 * 1024 * 1024;
constexpr VkMemoryPropertyFlags UPLOAD_HEAP_PROPERTIES =
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
std::array<VkDeviceSize, VK_MAX_MEMORY_HEAPS> heap_size_limits;
if (m_debug_device)
{
VkPhysicalDeviceMemoryProperties memory_properties;
vkGetPhysicalDeviceMemoryProperties(m_physical_device, &memory_properties);
bool has_upload_heap = false;
heap_size_limits.fill(VK_WHOLE_SIZE);
for (u32 i = 0; i < memory_properties.memoryTypeCount; i++)
{
// Look for any memory types which are upload-like.
const VkMemoryType& type = memory_properties.memoryTypes[i];
if ((type.propertyFlags & UPLOAD_HEAP_PROPERTIES) != UPLOAD_HEAP_PROPERTIES)
continue;
const VkMemoryHeap& heap = memory_properties.memoryHeaps[type.heapIndex];
if (heap.size >= UPLOAD_HEAP_SIZE_THRESHOLD)
continue;
if (heap_size_limits[type.heapIndex] == VK_WHOLE_SIZE)
{
Log_WarningPrintf("Disabling allocation from upload heap #%u (%.2f MB) due to debug device.", type.heapIndex,
static_cast<float>(heap.size) / 1048576.0f);
heap_size_limits[type.heapIndex] = 0;
has_upload_heap = true;
}
}
if (has_upload_heap)
ci.pHeapSizeLimit = heap_size_limits.data();
}
VkResult res = vmaCreateAllocator(&ci, &m_allocator);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vmaCreateAllocator failed: ");
return false;
}
return true;
}
void VulkanDevice::DestroyAllocator()
{
if (m_allocator == VK_NULL_HANDLE)
return;
vmaDestroyAllocator(m_allocator);
m_allocator = VK_NULL_HANDLE;
}
bool VulkanDevice::CreateCommandBuffers()
{
VkResult res;
uint32_t frame_index = 0;
for (CommandBuffer& resources : m_frame_resources)
{
resources.needs_fence_wait = false;
VkCommandPoolCreateInfo pool_info = {VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, nullptr, 0,
m_graphics_queue_family_index};
res = vkCreateCommandPool(m_device, &pool_info, nullptr, &resources.command_pool);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateCommandPool failed: ");
return false;
}
Vulkan::SetObjectName(m_device, resources.command_pool, TinyString::from_fmt("Frame Command Pool {}", frame_index));
VkCommandBufferAllocateInfo buffer_info = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, nullptr,
resources.command_pool, VK_COMMAND_BUFFER_LEVEL_PRIMARY,
static_cast<u32>(resources.command_buffers.size())};
res = vkAllocateCommandBuffers(m_device, &buffer_info, resources.command_buffers.data());
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkAllocateCommandBuffers failed: ");
return false;
}
for (u32 i = 0; i < resources.command_buffers.size(); i++)
{
Vulkan::SetObjectName(m_device, resources.command_buffers[i],
TinyString::from_fmt("Frame {} {}Command Buffer", frame_index, (i == 0) ? "Init" : ""));
}
VkFenceCreateInfo fence_info = {VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, nullptr, VK_FENCE_CREATE_SIGNALED_BIT};
res = vkCreateFence(m_device, &fence_info, nullptr, &resources.fence);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateFence failed: ");
return false;
}
Vulkan::SetObjectName(m_device, resources.fence, TinyString::from_fmt("Frame Fence {}", frame_index));
if (!m_optional_extensions.vk_khr_push_descriptor)
{
VkDescriptorPoolSize pool_sizes[] = {
{VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, MAX_COMBINED_IMAGE_SAMPLER_DESCRIPTORS_PER_FRAME},
};
VkDescriptorPoolCreateInfo pool_create_info = {
VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, nullptr, 0, MAX_DESCRIPTOR_SETS_PER_FRAME,
static_cast<u32>(std::size(pool_sizes)), pool_sizes};
res = vkCreateDescriptorPool(m_device, &pool_create_info, nullptr, &resources.descriptor_pool);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDescriptorPool failed: ");
return false;
}
Vulkan::SetObjectName(m_device, resources.descriptor_pool,
TinyString::from_fmt("Frame Descriptor Pool {}", frame_index));
}
++frame_index;
}
BeginCommandBuffer(0);
return true;
}
void VulkanDevice::DestroyCommandBuffers()
{
for (CommandBuffer& resources : m_frame_resources)
{
if (resources.fence != VK_NULL_HANDLE)
vkDestroyFence(m_device, resources.fence, nullptr);
if (resources.descriptor_pool != VK_NULL_HANDLE)
vkDestroyDescriptorPool(m_device, resources.descriptor_pool, nullptr);
if (resources.command_buffers[0] != VK_NULL_HANDLE)
{
vkFreeCommandBuffers(m_device, resources.command_pool, static_cast<u32>(resources.command_buffers.size()),
resources.command_buffers.data());
}
if (resources.command_pool != VK_NULL_HANDLE)
vkDestroyCommandPool(m_device, resources.command_pool, nullptr);
}
}
bool VulkanDevice::CreatePersistentDescriptorPool()
{
static constexpr const VkDescriptorPoolSize pool_sizes[] = {
{VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1},
{VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, MAX_SAMPLER_DESCRIPTORS},
{VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER, 16},
{VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 16},
};
const VkDescriptorPoolCreateInfo pool_create_info = {
VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, nullptr,
VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, MAX_SAMPLER_DESCRIPTORS,
static_cast<u32>(std::size(pool_sizes)), pool_sizes};
VkResult res = vkCreateDescriptorPool(m_device, &pool_create_info, nullptr, &m_global_descriptor_pool);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDescriptorPool failed: ");
return false;
}
Vulkan::SetObjectName(m_device, m_global_descriptor_pool, "Global Descriptor Pool");
if (m_features.gpu_timing)
{
const VkQueryPoolCreateInfo query_create_info = {
VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO, nullptr, 0, VK_QUERY_TYPE_TIMESTAMP, NUM_COMMAND_BUFFERS * 4, 0};
res = vkCreateQueryPool(m_device, &query_create_info, nullptr, &m_timestamp_query_pool);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateQueryPool failed: ");
m_features.gpu_timing = false;
return false;
}
}
return true;
}
void VulkanDevice::DestroyPersistentDescriptorPool()
{
if (m_timestamp_query_pool != VK_NULL_HANDLE)
vkDestroyQueryPool(m_device, m_timestamp_query_pool, nullptr);
if (m_global_descriptor_pool != VK_NULL_HANDLE)
vkDestroyDescriptorPool(m_device, m_global_descriptor_pool, nullptr);
}
VkRenderPass VulkanDevice::GetRenderPass(VkFormat color_format, VkFormat depth_format, VkSampleCountFlagBits samples,
VkAttachmentLoadOp color_load_op /* = VK_ATTACHMENT_LOAD_OP_LOAD */,
VkAttachmentStoreOp color_store_op /* = VK_ATTACHMENT_STORE_OP_STORE */,
VkAttachmentLoadOp depth_load_op /* = VK_ATTACHMENT_LOAD_OP_LOAD */,
VkAttachmentStoreOp depth_store_op /* = VK_ATTACHMENT_STORE_OP_STORE */,
VkAttachmentLoadOp stencil_load_op /* = VK_ATTACHMENT_LOAD_OP_DONT_CARE */,
VkAttachmentStoreOp stencil_store_op /* = VK_ATTACHMENT_STORE_OP_DONT_CARE */,
bool color_feedback_loop /* = false */, bool depth_sampling /* = false */)
{
RenderPassCacheKey key = {};
key.color_format = color_format;
key.depth_format = depth_format;
key.samples = samples;
key.color_load_op = color_load_op;
key.color_store_op = color_store_op;
key.depth_load_op = depth_load_op;
key.depth_store_op = depth_store_op;
key.stencil_load_op = stencil_load_op;
key.stencil_store_op = stencil_store_op;
key.color_feedback_loop = color_feedback_loop;
key.depth_sampling = depth_sampling;
auto it = m_render_pass_cache.find(key.key);
if (it != m_render_pass_cache.end())
return it->second;
return CreateCachedRenderPass(key);
}
VkRenderPass VulkanDevice::GetRenderPassForRestarting(VkRenderPass pass)
{
for (const auto& it : m_render_pass_cache)
{
if (it.second != pass)
continue;
RenderPassCacheKey modified_key;
modified_key.key = it.first;
if (modified_key.color_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR)
modified_key.color_load_op = VK_ATTACHMENT_LOAD_OP_LOAD;
if (modified_key.depth_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR)
modified_key.depth_load_op = VK_ATTACHMENT_LOAD_OP_LOAD;
if (modified_key.stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR)
modified_key.stencil_load_op = VK_ATTACHMENT_LOAD_OP_LOAD;
if (modified_key.key == it.first)
return pass;
auto fit = m_render_pass_cache.find(modified_key.key);
if (fit != m_render_pass_cache.end())
return fit->second;
return CreateCachedRenderPass(modified_key);
}
return pass;
}
VkCommandBuffer VulkanDevice::GetCurrentInitCommandBuffer()
{
CommandBuffer& res = m_frame_resources[m_current_frame];
VkCommandBuffer buf = res.command_buffers[0];
if (res.init_buffer_used)
return buf;
VkCommandBufferBeginInfo bi{VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, nullptr,
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, nullptr};
vkBeginCommandBuffer(buf, &bi);
res.init_buffer_used = true;
return buf;
}
VkDescriptorSet VulkanDevice::AllocateDescriptorSet(VkDescriptorSetLayout set_layout)
{
VkDescriptorSetAllocateInfo allocate_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, nullptr,
m_frame_resources[m_current_frame].descriptor_pool, 1, &set_layout};
VkDescriptorSet descriptor_set;
VkResult res = vkAllocateDescriptorSets(m_device, &allocate_info, &descriptor_set);
if (res != VK_SUCCESS)
{
// Failing to allocate a descriptor set is not a fatal error, we can
// recover by moving to the next command buffer.
return VK_NULL_HANDLE;
}
return descriptor_set;
}
VkDescriptorSet VulkanDevice::AllocatePersistentDescriptorSet(VkDescriptorSetLayout set_layout)
{
VkDescriptorSetAllocateInfo allocate_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, nullptr,
m_global_descriptor_pool, 1, &set_layout};
VkDescriptorSet descriptor_set;
VkResult res = vkAllocateDescriptorSets(m_device, &allocate_info, &descriptor_set);
if (res != VK_SUCCESS)
return VK_NULL_HANDLE;
return descriptor_set;
}
void VulkanDevice::FreePersistentDescriptorSet(VkDescriptorSet set)
{
vkFreeDescriptorSets(m_device, m_global_descriptor_pool, 1, &set);
}
void VulkanDevice::WaitForFenceCounter(u64 fence_counter)
{
if (m_completed_fence_counter >= fence_counter)
return;
// Find the first command buffer which covers this counter value.
u32 index = (m_current_frame + 1) % NUM_COMMAND_BUFFERS;
while (index != m_current_frame)
{
if (m_frame_resources[index].fence_counter >= fence_counter)
break;
index = (index + 1) % NUM_COMMAND_BUFFERS;
}
DebugAssert(index != m_current_frame);
WaitForCommandBufferCompletion(index);
}
void VulkanDevice::WaitForGPUIdle()
{
WaitForPresentComplete();
vkDeviceWaitIdle(m_device);
}
float VulkanDevice::GetAndResetAccumulatedGPUTime()
{
const float time = m_accumulated_gpu_time;
m_accumulated_gpu_time = 0.0f;
return time;
}
bool VulkanDevice::SetGPUTimingEnabled(bool enabled)
{
m_gpu_timing_enabled = enabled && m_features.gpu_timing;
return (enabled == m_gpu_timing_enabled);
}
void VulkanDevice::WaitForCommandBufferCompletion(u32 index)
{
// Wait for this command buffer to be completed.
VkResult res = vkWaitForFences(m_device, 1, &m_frame_resources[index].fence, VK_TRUE, UINT64_MAX);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkWaitForFences failed: ");
m_last_submit_failed.store(true, std::memory_order_release);
return;
}
// Clean up any resources for command buffers between the last known completed buffer and this
// now-completed command buffer. If we use >2 buffers, this may be more than one buffer.
const u64 now_completed_counter = m_frame_resources[index].fence_counter;
u32 cleanup_index = (m_current_frame + 1) % NUM_COMMAND_BUFFERS;
while (cleanup_index != m_current_frame)
{
CommandBuffer& resources = m_frame_resources[cleanup_index];
if (resources.fence_counter > now_completed_counter)
break;
if (m_gpu_timing_enabled && resources.timestamp_written)
{
std::array<u64, 2> timestamps;
res =
vkGetQueryPoolResults(m_device, m_timestamp_query_pool, index * 2, static_cast<u32>(timestamps.size()),
sizeof(u64) * timestamps.size(), timestamps.data(), sizeof(u64), VK_QUERY_RESULT_64_BIT);
if (res == VK_SUCCESS)
{
// if we didn't write the timestamp at the start of the cmdbuffer (just enabled timing), the first TS will be
// zero
if (timestamps[0] > 0 && m_gpu_timing_enabled)
{
const double ns_diff =
(timestamps[1] - timestamps[0]) * static_cast<double>(m_device_properties.limits.timestampPeriod);
m_accumulated_gpu_time += static_cast<float>(ns_diff / 1000000.0);
}
}
else
{
LOG_VULKAN_ERROR(res, "vkGetQueryPoolResults failed: ");
}
}
cleanup_index = (cleanup_index + 1) % NUM_COMMAND_BUFFERS;
}
m_completed_fence_counter = now_completed_counter;
while (!m_cleanup_objects.empty())
{
auto& it = m_cleanup_objects.front();
if (it.first > now_completed_counter)
break;
it.second();
m_cleanup_objects.pop_front();
}
}
void VulkanDevice::SubmitCommandBuffer(VulkanSwapChain* present_swap_chain /* = nullptr */,
bool submit_on_thread /* = false */)
{
if (m_last_submit_failed.load(std::memory_order_acquire))
return;
CommandBuffer& resources = m_frame_resources[m_current_frame];
// End the current command buffer.
VkResult res;
if (resources.init_buffer_used)
{
res = vkEndCommandBuffer(resources.command_buffers[0]);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEndCommandBuffer failed: ");
Panic("Failed to end command buffer");
}
}
if (m_gpu_timing_enabled && resources.timestamp_written)
{
vkCmdWriteTimestamp(m_current_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, m_timestamp_query_pool,
m_current_frame * 2 + 1);
}
res = vkEndCommandBuffer(resources.command_buffers[1]);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkEndCommandBuffer failed: ");
Panic("Failed to end command buffer");
}
// This command buffer now has commands, so can't be re-used without waiting.
resources.needs_fence_wait = true;
std::unique_lock<std::mutex> lock(m_present_mutex);
WaitForPresentComplete(lock);
if (!submit_on_thread || !m_present_thread.joinable())
{
DoSubmitCommandBuffer(m_current_frame, present_swap_chain);
if (present_swap_chain)
DoPresent(present_swap_chain);
return;
}
m_queued_present.command_buffer_index = m_current_frame;
m_queued_present.swap_chain = present_swap_chain;
m_present_done.store(false);
m_present_queued_cv.notify_one();
}
void VulkanDevice::DoSubmitCommandBuffer(u32 index, VulkanSwapChain* present_swap_chain)
{
CommandBuffer& resources = m_frame_resources[index];
uint32_t wait_bits = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
VkSubmitInfo submit_info = {VK_STRUCTURE_TYPE_SUBMIT_INFO,
nullptr,
0u,
nullptr,
nullptr,
resources.init_buffer_used ? 2u : 1u,
resources.init_buffer_used ? resources.command_buffers.data() :
&resources.command_buffers[1],
0u,
nullptr};
if (present_swap_chain)
{
submit_info.pWaitSemaphores = present_swap_chain->GetImageAvailableSemaphorePtr();
submit_info.waitSemaphoreCount = 1;
submit_info.pWaitDstStageMask = &wait_bits;
submit_info.pSignalSemaphores = present_swap_chain->GetRenderingFinishedSemaphorePtr();
submit_info.signalSemaphoreCount = 1;
}
const VkResult res = vkQueueSubmit(m_graphics_queue, 1, &submit_info, resources.fence);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkQueueSubmit failed: ");
m_last_submit_failed.store(true, std::memory_order_release);
return;
}
}
void VulkanDevice::DoPresent(VulkanSwapChain* present_swap_chain)
{
const VkPresentInfoKHR present_info = {VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
nullptr,
1,
present_swap_chain->GetRenderingFinishedSemaphorePtr(),
1,
present_swap_chain->GetSwapChainPtr(),
present_swap_chain->GetCurrentImageIndexPtr(),
nullptr};
present_swap_chain->ReleaseCurrentImage();
const VkResult res = vkQueuePresentKHR(m_present_queue, &present_info);
if (res != VK_SUCCESS)
{
// VK_ERROR_OUT_OF_DATE_KHR is not fatal, just means we need to recreate our swap chain.
if (res != VK_ERROR_OUT_OF_DATE_KHR && res != VK_SUBOPTIMAL_KHR)
LOG_VULKAN_ERROR(res, "vkQueuePresentKHR failed: ");
m_last_present_failed.store(true, std::memory_order_release);
return;
}
// Grab the next image as soon as possible, that way we spend less time blocked on the next
// submission. Don't care if it fails, we'll deal with that at the presentation call site.
// Credit to dxvk for the idea.
present_swap_chain->AcquireNextImage();
}
void VulkanDevice::WaitForPresentComplete()
{
if (m_present_done.load())
return;
std::unique_lock<std::mutex> lock(m_present_mutex);
WaitForPresentComplete(lock);
}
void VulkanDevice::WaitForPresentComplete(std::unique_lock<std::mutex>& lock)
{
if (m_present_done.load())
return;
m_present_done_cv.wait(lock, [this]() { return m_present_done.load(); });
}
void VulkanDevice::PresentThread()
{
std::unique_lock<std::mutex> lock(m_present_mutex);
while (!m_present_thread_done.load())
{
m_present_queued_cv.wait(lock, [this]() { return !m_present_done.load() || m_present_thread_done.load(); });
if (m_present_done.load())
continue;
DoSubmitCommandBuffer(m_queued_present.command_buffer_index, m_queued_present.swap_chain);
if (m_queued_present.swap_chain)
DoPresent(m_queued_present.swap_chain);
m_present_done.store(true);
m_present_done_cv.notify_one();
}
}
void VulkanDevice::StartPresentThread()
{
DebugAssert(!m_present_thread.joinable());
m_present_thread_done.store(false);
m_present_thread = std::thread(&VulkanDevice::PresentThread, this);
}
void VulkanDevice::StopPresentThread()
{
if (!m_present_thread.joinable())
return;
{
std::unique_lock<std::mutex> lock(m_present_mutex);
WaitForPresentComplete(lock);
m_present_thread_done.store(true);
m_present_queued_cv.notify_one();
}
m_present_thread.join();
}
void VulkanDevice::MoveToNextCommandBuffer()
{
BeginCommandBuffer((m_current_frame + 1) % NUM_COMMAND_BUFFERS);
}
void VulkanDevice::BeginCommandBuffer(u32 index)
{
CommandBuffer& resources = m_frame_resources[index];
if (!m_present_done.load() && m_queued_present.command_buffer_index == index)
WaitForPresentComplete();
// Wait for the GPU to finish with all resources for this command buffer.
if (resources.fence_counter > m_completed_fence_counter)
WaitForCommandBufferCompletion(index);
// Reset fence to unsignaled before starting.
VkResult res = vkResetFences(m_device, 1, &resources.fence);
if (res != VK_SUCCESS)
LOG_VULKAN_ERROR(res, "vkResetFences failed: ");
// Reset command pools to beginning since we can re-use the memory now
res = vkResetCommandPool(m_device, resources.command_pool, 0);
if (res != VK_SUCCESS)
LOG_VULKAN_ERROR(res, "vkResetCommandPool failed: ");
// Enable commands to be recorded to the two buffers again.
VkCommandBufferBeginInfo begin_info = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, nullptr,
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, nullptr};
res = vkBeginCommandBuffer(resources.command_buffers[1], &begin_info);
if (res != VK_SUCCESS)
LOG_VULKAN_ERROR(res, "vkBeginCommandBuffer failed: ");
// Also can do the same for the descriptor pools
if (resources.descriptor_pool != VK_NULL_HANDLE)
{
res = vkResetDescriptorPool(m_device, resources.descriptor_pool, 0);
if (res != VK_SUCCESS)
LOG_VULKAN_ERROR(res, "vkResetDescriptorPool failed: ");
}
if (m_gpu_timing_enabled)
{
vkCmdResetQueryPool(resources.command_buffers[1], m_timestamp_query_pool, index * 2, 2);
vkCmdWriteTimestamp(resources.command_buffers[1], VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, m_timestamp_query_pool,
index * 2);
}
resources.fence_counter = m_next_fence_counter++;
resources.init_buffer_used = false;
resources.timestamp_written = m_gpu_timing_enabled;
m_current_frame = index;
m_current_command_buffer = resources.command_buffers[1];
// using the lower 32 bits of the fence index should be sufficient here, I hope...
vmaSetCurrentFrameIndex(m_allocator, static_cast<u32>(m_next_fence_counter));
}
void VulkanDevice::SubmitCommandBuffer(bool wait_for_completion)
{
DebugAssert(!InRenderPass());
const u32 current_frame = m_current_frame;
SubmitCommandBuffer();
MoveToNextCommandBuffer();
if (wait_for_completion)
WaitForCommandBufferCompletion(current_frame);
InvalidateCachedState();
}
void VulkanDevice::SubmitCommandBuffer(bool wait_for_completion, const char* reason, ...)
{
std::va_list ap;
va_start(ap, reason);
const std::string reason_str(StringUtil::StdStringFromFormatV(reason, ap));
va_end(ap);
Log_WarningPrintf("Executing command buffer due to '%s'", reason_str.c_str());
SubmitCommandBuffer(wait_for_completion);
}
void VulkanDevice::SubmitCommandBufferAndRestartRenderPass(const char* reason)
{
if (InRenderPass())
EndRenderPass();
VulkanFramebuffer* fb = m_current_framebuffer;
VulkanPipeline* pl = m_current_pipeline;
SubmitCommandBuffer(false, "%s", reason);
if (fb)
SetFramebuffer(fb);
SetPipeline(pl);
BeginRenderPass();
}
bool VulkanDevice::CheckLastPresentFail()
{
return m_last_present_failed.exchange(false, std::memory_order_acq_rel);
}
bool VulkanDevice::CheckLastSubmitFail()
{
return m_last_submit_failed.load(std::memory_order_acquire);
}
void VulkanDevice::DeferBufferDestruction(VkBuffer object, VmaAllocation allocation)
{
m_cleanup_objects.emplace_back(GetCurrentFenceCounter(),
[this, object, allocation]() { vmaDestroyBuffer(m_allocator, object, allocation); });
}
void VulkanDevice::DeferFramebufferDestruction(VkFramebuffer object)
{
m_cleanup_objects.emplace_back(GetCurrentFenceCounter(),
[this, object]() { vkDestroyFramebuffer(m_device, object, nullptr); });
}
void VulkanDevice::DeferImageDestruction(VkImage object, VmaAllocation allocation)
{
m_cleanup_objects.emplace_back(GetCurrentFenceCounter(),
[this, object, allocation]() { vmaDestroyImage(m_allocator, object, allocation); });
}
void VulkanDevice::DeferImageViewDestruction(VkImageView object)
{
m_cleanup_objects.emplace_back(GetCurrentFenceCounter(),
[this, object]() { vkDestroyImageView(m_device, object, nullptr); });
}
void VulkanDevice::DeferPipelineDestruction(VkPipeline object)
{
m_cleanup_objects.emplace_back(GetCurrentFenceCounter(),
[this, object]() { vkDestroyPipeline(m_device, object, nullptr); });
}
void VulkanDevice::DeferBufferViewDestruction(VkBufferView object)
{
m_cleanup_objects.emplace_back(GetCurrentFenceCounter(),
[this, object]() { vkDestroyBufferView(m_device, object, nullptr); });
}
void VulkanDevice::DeferPersistentDescriptorSetDestruction(VkDescriptorSet object)
{
m_cleanup_objects.emplace_back(GetCurrentFenceCounter(), [this, object]() { FreePersistentDescriptorSet(object); });
}
VKAPI_ATTR VkBool32 VKAPI_CALL DebugMessengerCallback(VkDebugUtilsMessageSeverityFlagBitsEXT severity,
VkDebugUtilsMessageTypeFlagsEXT messageType,
const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData,
void* pUserData)
{
if (severity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT)
{
Log_ErrorPrintf("Vulkan debug report: (%s) %s", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "",
pCallbackData->pMessage);
}
else if (severity & (VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT))
{
Log_WarningPrintf("Vulkan debug report: (%s) %s",
pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "", pCallbackData->pMessage);
}
else if (severity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT)
{
Log_InfoPrintf("Vulkan debug report: (%s) %s", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "",
pCallbackData->pMessage);
}
else
{
Log_DevPrintf("Vulkan debug report: (%s) %s", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "",
pCallbackData->pMessage);
}
return VK_FALSE;
}
bool VulkanDevice::EnableDebugUtils()
{
// Already enabled?
if (m_debug_messenger_callback != VK_NULL_HANDLE)
return true;
// Check for presence of the functions before calling
if (!vkCreateDebugUtilsMessengerEXT || !vkDestroyDebugUtilsMessengerEXT || !vkSubmitDebugUtilsMessageEXT)
{
return false;
}
VkDebugUtilsMessengerCreateInfoEXT messenger_info = {
VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT,
nullptr,
0,
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT,
VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT,
DebugMessengerCallback,
nullptr};
const VkResult res =
vkCreateDebugUtilsMessengerEXT(m_instance, &messenger_info, nullptr, &m_debug_messenger_callback);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateDebugUtilsMessengerEXT failed: ");
return false;
}
return true;
}
void VulkanDevice::DisableDebugUtils()
{
if (m_debug_messenger_callback != VK_NULL_HANDLE)
{
vkDestroyDebugUtilsMessengerEXT(m_instance, m_debug_messenger_callback, nullptr);
m_debug_messenger_callback = VK_NULL_HANDLE;
}
}
VkRenderPass VulkanDevice::CreateCachedRenderPass(RenderPassCacheKey key)
{
VkAttachmentReference color_reference;
VkAttachmentReference* color_reference_ptr = nullptr;
VkAttachmentReference depth_reference;
VkAttachmentReference* depth_reference_ptr = nullptr;
VkAttachmentReference input_reference;
VkAttachmentReference* input_reference_ptr = nullptr;
VkSubpassDependency subpass_dependency;
VkSubpassDependency* subpass_dependency_ptr = nullptr;
std::array<VkAttachmentDescription, 2> attachments;
u32 num_attachments = 0;
if (key.color_format != VK_FORMAT_UNDEFINED)
{
const VkImageLayout layout =
key.color_feedback_loop ?
(UseFeedbackLoopLayout() ? VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT : VK_IMAGE_LAYOUT_GENERAL) :
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
attachments[num_attachments] = {0,
static_cast<VkFormat>(key.color_format),
static_cast<VkSampleCountFlagBits>(key.samples),
static_cast<VkAttachmentLoadOp>(key.color_load_op),
static_cast<VkAttachmentStoreOp>(key.color_store_op),
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
layout,
layout};
color_reference.attachment = num_attachments;
color_reference.layout = layout;
color_reference_ptr = &color_reference;
if (key.color_feedback_loop)
{
if (!UseFeedbackLoopLayout())
{
input_reference.attachment = num_attachments;
input_reference.layout = layout;
input_reference_ptr = &input_reference;
}
if (!m_optional_extensions.vk_ext_rasterization_order_attachment_access)
{
// don't need the framebuffer-local dependency when we have rasterization order attachment access
subpass_dependency.srcSubpass = 0;
subpass_dependency.dstSubpass = 0;
subpass_dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
subpass_dependency.dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
subpass_dependency.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
subpass_dependency.dstAccessMask =
UseFeedbackLoopLayout() ? VK_ACCESS_SHADER_READ_BIT : VK_ACCESS_INPUT_ATTACHMENT_READ_BIT;
subpass_dependency.dependencyFlags = UseFeedbackLoopLayout() ?
(VK_DEPENDENCY_BY_REGION_BIT | VK_DEPENDENCY_FEEDBACK_LOOP_BIT_EXT) :
VK_DEPENDENCY_BY_REGION_BIT;
subpass_dependency_ptr = &subpass_dependency;
}
}
num_attachments++;
}
if (key.depth_format != VK_FORMAT_UNDEFINED)
{
const VkImageLayout layout =
key.depth_sampling ?
(UseFeedbackLoopLayout() ? VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT : VK_IMAGE_LAYOUT_GENERAL) :
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments[num_attachments] = {0,
static_cast<VkFormat>(key.depth_format),
static_cast<VkSampleCountFlagBits>(key.samples),
static_cast<VkAttachmentLoadOp>(key.depth_load_op),
static_cast<VkAttachmentStoreOp>(key.depth_store_op),
static_cast<VkAttachmentLoadOp>(key.stencil_load_op),
static_cast<VkAttachmentStoreOp>(key.stencil_store_op),
layout,
layout};
depth_reference.attachment = num_attachments;
depth_reference.layout = layout;
depth_reference_ptr = &depth_reference;
num_attachments++;
}
const VkSubpassDescriptionFlags subpass_flags =
(key.color_feedback_loop && m_optional_extensions.vk_ext_rasterization_order_attachment_access) ?
VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_COLOR_ACCESS_BIT_EXT :
0;
const VkSubpassDescription subpass = {subpass_flags,
VK_PIPELINE_BIND_POINT_GRAPHICS,
input_reference_ptr ? 1u : 0u,
input_reference_ptr ? input_reference_ptr : nullptr,
color_reference_ptr ? 1u : 0u,
color_reference_ptr ? color_reference_ptr : nullptr,
nullptr,
depth_reference_ptr,
0,
nullptr};
const VkRenderPassCreateInfo pass_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
nullptr,
0u,
num_attachments,
attachments.data(),
1u,
&subpass,
subpass_dependency_ptr ? 1u : 0u,
subpass_dependency_ptr};
VkRenderPass pass;
const VkResult res = vkCreateRenderPass(m_device, &pass_info, nullptr, &pass);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreateRenderPass failed: ");
return VK_NULL_HANDLE;
}
m_render_pass_cache.emplace(key.key, pass);
return pass;
}
void VulkanDevice::GetAdapterAndModeList(AdapterAndModeList* ret, VkInstance instance)
{
GPUList gpus = EnumerateGPUs(instance);
ret->adapter_names.clear();
for (auto& [gpu, name] : gpus)
ret->adapter_names.push_back(std::move(name));
}
GPUDevice::AdapterAndModeList VulkanDevice::StaticGetAdapterAndModeList()
{
AdapterAndModeList ret;
std::unique_lock lock(s_instance_mutex);
// Device shouldn't be torn down since we have the lock.
if (g_gpu_device && g_gpu_device->GetRenderAPI() == RenderAPI::Vulkan && Vulkan::IsVulkanLibraryLoaded())
{
GetAdapterAndModeList(&ret, VulkanDevice::GetInstance().m_instance);
}
else
{
if (Vulkan::LoadVulkanLibrary())
{
ScopedGuard lib_guard([]() { Vulkan::UnloadVulkanLibrary(); });
const VkInstance instance = CreateVulkanInstance(WindowInfo(), false, false);
if (instance != VK_NULL_HANDLE)
{
if (Vulkan::LoadVulkanInstanceFunctions(instance))
GetAdapterAndModeList(&ret, instance);
vkDestroyInstance(instance, nullptr);
}
}
}
return ret;
}
GPUDevice::AdapterAndModeList VulkanDevice::GetAdapterAndModeList()
{
AdapterAndModeList ret;
GetAdapterAndModeList(&ret, m_instance);
return ret;
}
bool VulkanDevice::IsSuitableDefaultRenderer()
{
#ifdef __ANDROID__
// No way in hell.
return false;
#else
AdapterAndModeList aml = StaticGetAdapterAndModeList();
if (aml.adapter_names.empty())
{
// No adapters, not gonna be able to use VK.
return false;
}
// Check the first GPU, should be enough.
const std::string& name = aml.adapter_names.front();
Log_InfoFmt("Using Vulkan GPU '{}' for automatic renderer check.", name);
// Any software rendering (LLVMpipe, SwiftShader).
if (StringUtil::StartsWithNoCase(name, "llvmpipe") || StringUtil::StartsWithNoCase(name, "SwiftShader"))
{
Log_InfoPrint("Not using Vulkan for software renderer.");
return false;
}
// For Intel, OpenGL usually ends up faster on Linux, because of fbfetch.
// Plus, the Ivy Bridge and Haswell drivers are incomplete.
if (StringUtil::StartsWithNoCase(name, "Intel"))
{
Log_InfoPrint("Not using Vulkan for Intel GPU.");
return false;
}
Log_InfoPrint("Allowing Vulkan as default renderer.");
return true;
#endif
}
RenderAPI VulkanDevice::GetRenderAPI() const
{
return RenderAPI::Vulkan;
}
bool VulkanDevice::HasSurface() const
{
return static_cast<bool>(m_swap_chain);
}
bool VulkanDevice::CreateDevice(const std::string_view& adapter, bool threaded_presentation)
{
std::unique_lock lock(s_instance_mutex);
bool enable_debug_utils = m_debug_device;
bool enable_validation_layer = m_debug_device;
std::optional<bool> exclusive_fullscreen_control;
if (!Vulkan::LoadVulkanLibrary())
{
Host::ReportErrorAsync("Error", "Failed to load Vulkan library. Does your GPU and/or driver support Vulkan?");
return false;
}
m_instance = CreateVulkanInstance(m_window_info, enable_debug_utils, enable_validation_layer);
if (m_instance == VK_NULL_HANDLE)
{
if (enable_debug_utils || enable_validation_layer)
{
// Try again without the validation layer.
enable_debug_utils = false;
enable_validation_layer = false;
m_instance = CreateVulkanInstance(m_window_info, enable_debug_utils, enable_validation_layer);
if (m_instance == VK_NULL_HANDLE)
{
Host::ReportErrorAsync("Error",
"Failed to create Vulkan instance. Does your GPU and/or driver support Vulkan?");
return false;
}
Log_ErrorPrintf("Vulkan validation/debug layers requested but are unavailable. Creating non-debug device.");
}
}
if (!Vulkan::LoadVulkanInstanceFunctions(m_instance))
{
Log_ErrorPrintf("Failed to load Vulkan instance functions");
return false;
}
GPUList gpus = EnumerateGPUs(m_instance);
if (gpus.empty())
{
Host::ReportErrorAsync("Error", "No physical devices found. Does your GPU and/or driver support Vulkan?");
return false;
}
if (!adapter.empty())
{
u32 gpu_index = 0;
for (; gpu_index < static_cast<u32>(gpus.size()); gpu_index++)
{
Log_InfoFmt("GPU {}: {}", gpu_index, gpus[gpu_index].second);
if (gpus[gpu_index].second == adapter)
{
m_physical_device = gpus[gpu_index].first;
break;
}
}
if (gpu_index == static_cast<u32>(gpus.size()))
{
Log_WarningFmt("Requested GPU '{}' not found, using first ({})", adapter, gpus[0].second);
m_physical_device = gpus[0].first;
}
}
else
{
Log_InfoFmt("No GPU requested, using first ({})", gpus[0].second);
m_physical_device = gpus[0].first;
}
// Read device physical memory properties, we need it for allocating buffers
vkGetPhysicalDeviceProperties(m_physical_device, &m_device_properties);
m_device_properties.limits.minUniformBufferOffsetAlignment =
std::max(m_device_properties.limits.minUniformBufferOffsetAlignment, static_cast<VkDeviceSize>(1));
m_device_properties.limits.minTexelBufferOffsetAlignment =
std::max(m_device_properties.limits.minTexelBufferOffsetAlignment, static_cast<VkDeviceSize>(1));
m_device_properties.limits.optimalBufferCopyOffsetAlignment =
std::max(m_device_properties.limits.optimalBufferCopyOffsetAlignment, static_cast<VkDeviceSize>(1));
m_device_properties.limits.optimalBufferCopyRowPitchAlignment =
std::max(m_device_properties.limits.optimalBufferCopyRowPitchAlignment, static_cast<VkDeviceSize>(1));
m_device_properties.limits.bufferImageGranularity =
std::max(m_device_properties.limits.bufferImageGranularity, static_cast<VkDeviceSize>(1));
if (enable_debug_utils)
EnableDebugUtils();
VkSurfaceKHR surface = VK_NULL_HANDLE;
ScopedGuard surface_cleanup = [this, &surface]() {
if (surface != VK_NULL_HANDLE)
vkDestroySurfaceKHR(m_instance, surface, nullptr);
};
if (m_window_info.type != WindowInfo::Type::Surfaceless)
{
surface = VulkanSwapChain::CreateVulkanSurface(m_instance, m_physical_device, &m_window_info);
if (surface == VK_NULL_HANDLE)
return false;
}
// Attempt to create the device.
if (!CreateDevice(surface, enable_validation_layer))
return false;
if (!CheckFeatures())
{
Host::ReportErrorAsync("Error", "Your GPU does not support the required Vulkan features.");
return false;
}
// And critical resources.
if (!CreateAllocator() || !CreatePersistentDescriptorPool() || !CreateCommandBuffers() || !CreatePipelineLayouts())
return false;
if (threaded_presentation)
StartPresentThread();
if (surface != VK_NULL_HANDLE)
{
m_swap_chain = VulkanSwapChain::Create(m_window_info, surface, m_vsync_enabled, exclusive_fullscreen_control);
if (!m_swap_chain)
{
Log_ErrorPrintf("Failed to create swap chain");
return false;
}
// NOTE: This is assigned afterwards, because some platforms can modify the window info (e.g. Metal).
m_window_info = m_swap_chain->GetWindowInfo();
}
surface_cleanup.Cancel();
// Render a frame as soon as possible to clear out whatever was previously being displayed.
if (m_window_info.type != WindowInfo::Type::Surfaceless)
RenderBlankFrame();
if (!CreateNullTexture())
{
Log_ErrorPrint("Failed to create dummy texture");
return false;
}
if (!CreateBuffers() || !CreatePersistentDescriptorSets())
return false;
return true;
}
void VulkanDevice::DestroyDevice()
{
std::unique_lock lock(s_instance_mutex);
if (InRenderPass())
EndRenderPass();
// Don't both submitting the current command buffer, just toss it.
if (m_device != VK_NULL_HANDLE)
WaitForGPUIdle();
StopPresentThread();
m_swap_chain.reset();
if (m_null_texture)
{
m_null_texture->Destroy(false);
m_null_texture.reset();
}
for (auto& it : m_cleanup_objects)
it.second();
m_cleanup_objects.clear();
DestroyDownloadBuffer();
DestroyPersistentDescriptorSets();
DestroyBuffers();
DestroySamplers();
DestroyPersistentDescriptorPool();
DestroyPipelineLayouts();
DestroyCommandBuffers();
DestroyAllocator();
for (auto& it : m_render_pass_cache)
vkDestroyRenderPass(m_device, it.second, nullptr);
m_render_pass_cache.clear();
if (m_pipeline_cache != VK_NULL_HANDLE)
{
vkDestroyPipelineCache(m_device, m_pipeline_cache, nullptr);
m_pipeline_cache = VK_NULL_HANDLE;
}
if (m_device != VK_NULL_HANDLE)
{
vkDestroyDevice(m_device, nullptr);
m_device = VK_NULL_HANDLE;
}
if (m_debug_messenger_callback != VK_NULL_HANDLE)
DisableDebugUtils();
if (m_instance != VK_NULL_HANDLE)
{
vkDestroyInstance(m_instance, nullptr);
m_instance = VK_NULL_HANDLE;
}
Vulkan::UnloadVulkanLibrary();
}
bool VulkanDevice::ValidatePipelineCacheHeader(const VK_PIPELINE_CACHE_HEADER& header)
{
if (header.header_length < sizeof(VK_PIPELINE_CACHE_HEADER))
{
Log_ErrorPrintf("Pipeline cache failed validation: Invalid header length");
return false;
}
if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
{
Log_ErrorPrintf("Pipeline cache failed validation: Invalid header version");
return false;
}
if (header.vendor_id != m_device_properties.vendorID)
{
Log_ErrorPrintf("Pipeline cache failed validation: Incorrect vendor ID (file: 0x%X, device: 0x%X)",
header.vendor_id, m_device_properties.vendorID);
return false;
}
if (header.device_id != m_device_properties.deviceID)
{
Log_ErrorPrintf("Pipeline cache failed validation: Incorrect device ID (file: 0x%X, device: 0x%X)",
header.device_id, m_device_properties.deviceID);
return false;
}
if (std::memcmp(header.uuid, m_device_properties.pipelineCacheUUID, VK_UUID_SIZE) != 0)
{
Log_ErrorPrintf("Pipeline cache failed validation: Incorrect UUID");
return false;
}
return true;
}
void VulkanDevice::FillPipelineCacheHeader(VK_PIPELINE_CACHE_HEADER* header)
{
header->header_length = sizeof(VK_PIPELINE_CACHE_HEADER);
header->header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE;
header->vendor_id = m_device_properties.vendorID;
header->device_id = m_device_properties.deviceID;
std::memcpy(header->uuid, m_device_properties.pipelineCacheUUID, VK_UUID_SIZE);
}
bool VulkanDevice::ReadPipelineCache(const std::string& filename)
{
std::optional<std::vector<u8>> data;
auto fp = FileSystem::OpenManagedCFile(filename.c_str(), "rb");
if (fp)
{
data = FileSystem::ReadBinaryFile(fp.get());
if (data.has_value())
{
if (data->size() < sizeof(VK_PIPELINE_CACHE_HEADER))
{
Log_ErrorPrintf("Pipeline cache at '%s' is too small", filename.c_str());
return false;
}
VK_PIPELINE_CACHE_HEADER header;
std::memcpy(&header, data->data(), sizeof(header));
if (!ValidatePipelineCacheHeader(header))
data.reset();
}
}
const VkPipelineCacheCreateInfo ci{VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO, nullptr, 0,
data.has_value() ? data->size() : 0, data.has_value() ? data->data() : nullptr};
VkResult res = vkCreatePipelineCache(m_device, &ci, nullptr, &m_pipeline_cache);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkCreatePipelineCache() failed: ");
return false;
}
return true;
}
bool VulkanDevice::GetPipelineCacheData(DynamicHeapArray<u8>* data)
{
if (m_pipeline_cache == VK_NULL_HANDLE)
return false;
size_t data_size;
VkResult res = vkGetPipelineCacheData(m_device, m_pipeline_cache, &data_size, nullptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData() failed: ");
return false;
}
data->resize(data_size);
res = vkGetPipelineCacheData(m_device, m_pipeline_cache, &data_size, data->data());
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkGetPipelineCacheData() (2) failed: ");
return false;
}
data->resize(data_size);
return true;
}
bool VulkanDevice::UpdateWindow()
{
DestroySurface();
if (!AcquireWindow(false))
return false;
if (m_window_info.IsSurfaceless())
return true;
// make sure previous frames are presented
if (InRenderPass())
EndRenderPass();
SubmitCommandBuffer(false);
WaitForGPUIdle();
VkSurfaceKHR surface = VulkanSwapChain::CreateVulkanSurface(m_instance, m_physical_device, &m_window_info);
if (surface == VK_NULL_HANDLE)
{
Log_ErrorPrintf("Failed to create new surface for swap chain");
return false;
}
// TODO: exclusive fullscreen control
m_swap_chain = VulkanSwapChain::Create(m_window_info, surface, m_vsync_enabled, std::nullopt);
if (!m_swap_chain)
{
Log_ErrorPrintf("Failed to create swap chain");
VulkanSwapChain::DestroyVulkanSurface(m_instance, &m_window_info, surface);
return false;
}
m_window_info = m_swap_chain->GetWindowInfo();
RenderBlankFrame();
return true;
}
void VulkanDevice::ResizeWindow(s32 new_window_width, s32 new_window_height, float new_window_scale)
{
if (m_swap_chain->GetWidth() == static_cast<u32>(new_window_width) &&
m_swap_chain->GetHeight() == static_cast<u32>(new_window_height))
{
// skip unnecessary resizes
m_window_info.surface_scale = new_window_scale;
return;
}
// make sure previous frames are presented
WaitForGPUIdle();
if (!m_swap_chain->ResizeSwapChain(new_window_width, new_window_height, new_window_scale))
{
// AcquireNextImage() will fail, and we'll recreate the surface.
Log_ErrorPrintf("Failed to resize swap chain. Next present will fail.");
return;
}
m_window_info = m_swap_chain->GetWindowInfo();
}
void VulkanDevice::DestroySurface()
{
WaitForGPUIdle();
m_swap_chain.reset();
}
bool VulkanDevice::SupportsTextureFormat(GPUTexture::Format format) const
{
return (TEXTURE_FORMAT_MAPPING[static_cast<u8>(format)] != VK_FORMAT_UNDEFINED);
}
std::string VulkanDevice::GetDriverInfo() const
{
std::string ret;
const u32 api_version = m_device_properties.apiVersion;
const u32 driver_version = m_device_properties.driverVersion;
if (m_optional_extensions.vk_khr_driver_properties)
{
const VkPhysicalDeviceDriverProperties& props = m_device_driver_properties;
ret = fmt::format(
"Driver {}.{}.{}\nVulkan {}.{}.{}\nConformance Version {}.{}.{}.{}\n{}\n{}\n{}", VK_VERSION_MAJOR(driver_version),
VK_VERSION_MINOR(driver_version), VK_VERSION_PATCH(driver_version), VK_API_VERSION_MAJOR(api_version),
VK_API_VERSION_MINOR(api_version), VK_API_VERSION_PATCH(api_version), props.conformanceVersion.major,
props.conformanceVersion.minor, props.conformanceVersion.subminor, props.conformanceVersion.patch,
props.driverInfo, props.driverName, m_device_properties.deviceName);
}
else
{
ret =
fmt::format("Driver {}.{}.{}\nVulkan {}.{}.{}\n{}", VK_VERSION_MAJOR(driver_version),
VK_VERSION_MINOR(driver_version), VK_VERSION_PATCH(driver_version), VK_API_VERSION_MAJOR(api_version),
VK_API_VERSION_MINOR(api_version), VK_API_VERSION_PATCH(api_version), m_device_properties.deviceName);
}
return ret;
}
void VulkanDevice::SetVSync(bool enabled)
{
if (!m_swap_chain || m_vsync_enabled == enabled)
return;
// This swap chain should not be used by the current buffer, thus safe to destroy.
WaitForGPUIdle();
if (!m_swap_chain->SetVSync(enabled))
{
// Try switching back to the old mode..
if (!m_swap_chain->SetVSync(m_vsync_enabled))
{
Panic("Failed to reset old vsync mode after failure");
m_swap_chain.reset();
}
}
m_vsync_enabled = enabled;
}
bool VulkanDevice::BeginPresent(bool frame_skip)
{
if (InRenderPass())
EndRenderPass();
if (frame_skip)
return false;
// If we're running surfaceless, kick the command buffer so we don't run out of descriptors.
if (!m_swap_chain)
{
SubmitCommandBuffer(false);
return false;
}
// Previous frame needs to be presented before we can acquire the swap chain.
WaitForPresentComplete();
// Check if the device was lost.
if (CheckLastSubmitFail())
{
Panic("Fixme"); // TODO
return false;
}
VkResult res = m_swap_chain->AcquireNextImage();
if (res != VK_SUCCESS)
{
m_swap_chain->ReleaseCurrentImage();
if (res == VK_SUBOPTIMAL_KHR || res == VK_ERROR_OUT_OF_DATE_KHR)
{
ResizeWindow(0, 0, m_window_info.surface_scale);
res = m_swap_chain->AcquireNextImage();
}
else if (res == VK_ERROR_SURFACE_LOST_KHR)
{
Log_WarningPrintf("Surface lost, attempting to recreate");
if (!m_swap_chain->RecreateSurface(m_window_info))
{
Log_ErrorPrintf("Failed to recreate surface after loss");
SubmitCommandBuffer(false);
return false;
}
res = m_swap_chain->AcquireNextImage();
}
// This can happen when multiple resize events happen in quick succession.
// In this case, just wait until the next frame to try again.
if (res != VK_SUCCESS && res != VK_SUBOPTIMAL_KHR)
{
// Still submit the command buffer, otherwise we'll end up with several frames waiting.
LOG_VULKAN_ERROR(res, "vkAcquireNextImageKHR() failed: ");
SubmitCommandBuffer(false);
return false;
}
}
BeginSwapChainRenderPass();
return true;
}
void VulkanDevice::EndPresent()
{
DebugAssert(InRenderPass() && !m_current_framebuffer);
EndRenderPass();
VkCommandBuffer cmdbuf = GetCurrentCommandBuffer();
VulkanTexture::TransitionSubresourcesToLayout(cmdbuf, m_swap_chain->GetCurrentImage(), GPUTexture::Type::RenderTarget,
0, 1, 0, 1, VulkanTexture::Layout::ColorAttachment,
VulkanTexture::Layout::PresentSrc);
SubmitCommandBuffer(m_swap_chain.get(), !m_swap_chain->IsPresentModeSynchronizing());
MoveToNextCommandBuffer();
InvalidateCachedState();
}
#ifdef _DEBUG
static std::array<float, 3> Palette(float phase, const std::array<float, 3>& a, const std::array<float, 3>& b,
const std::array<float, 3>& c, const std::array<float, 3>& d)
{
std::array<float, 3> result;
result[0] = a[0] + b[0] * std::cos(6.28318f * (c[0] * phase + d[0]));
result[1] = a[1] + b[1] * std::cos(6.28318f * (c[1] * phase + d[1]));
result[2] = a[2] + b[2] * std::cos(6.28318f * (c[2] * phase + d[2]));
return result;
}
#endif
void VulkanDevice::PushDebugGroup(const char* name)
{
#ifdef _DEBUG
if (!vkCmdBeginDebugUtilsLabelEXT || !m_debug_device)
return;
const std::array<float, 3> color = Palette(static_cast<float>(++s_debug_scope_depth), {0.5f, 0.5f, 0.5f},
{0.5f, 0.5f, 0.5f}, {1.0f, 1.0f, 0.5f}, {0.8f, 0.90f, 0.30f});
const VkDebugUtilsLabelEXT label = {
VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT,
nullptr,
name,
{color[0], color[1], color[2], 1.0f},
};
vkCmdBeginDebugUtilsLabelEXT(GetCurrentCommandBuffer(), &label);
#endif
}
void VulkanDevice::PopDebugGroup()
{
#ifdef _DEBUG
if (!vkCmdEndDebugUtilsLabelEXT || !m_debug_device)
return;
s_debug_scope_depth = (s_debug_scope_depth == 0) ? 0 : (s_debug_scope_depth - 1u);
vkCmdEndDebugUtilsLabelEXT(GetCurrentCommandBuffer());
#endif
}
void VulkanDevice::InsertDebugMessage(const char* msg)
{
#ifdef _DEBUG
if (!vkCmdInsertDebugUtilsLabelEXT || !m_debug_device)
return;
const VkDebugUtilsLabelEXT label = {VK_STRUCTURE_TYPE_DEBUG_UTILS_LABEL_EXT, nullptr, msg, {0.0f, 0.0f, 0.0f, 1.0f}};
vkCmdInsertDebugUtilsLabelEXT(GetCurrentCommandBuffer(), &label);
#endif
}
bool VulkanDevice::CheckFeatures()
{
m_max_texture_size = m_device_properties.limits.maxImageDimension2D;
VkImageFormatProperties color_properties = {};
vkGetPhysicalDeviceImageFormatProperties(m_physical_device, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TYPE_2D,
VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, 0,
&color_properties);
VkImageFormatProperties depth_properties = {};
vkGetPhysicalDeviceImageFormatProperties(m_physical_device, VK_FORMAT_D32_SFLOAT, VK_IMAGE_TYPE_2D,
VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, 0,
&depth_properties);
const VkSampleCountFlags combined_properties = m_device_properties.limits.framebufferColorSampleCounts &
m_device_properties.limits.framebufferDepthSampleCounts &
color_properties.sampleCounts & depth_properties.sampleCounts;
if (combined_properties & VK_SAMPLE_COUNT_64_BIT)
m_max_multisamples = 64;
else if (combined_properties & VK_SAMPLE_COUNT_32_BIT)
m_max_multisamples = 32;
else if (combined_properties & VK_SAMPLE_COUNT_16_BIT)
m_max_multisamples = 16;
else if (combined_properties & VK_SAMPLE_COUNT_8_BIT)
m_max_multisamples = 8;
else if (combined_properties & VK_SAMPLE_COUNT_4_BIT)
m_max_multisamples = 4;
else if (combined_properties & VK_SAMPLE_COUNT_2_BIT)
m_max_multisamples = 2;
else
m_max_multisamples = 1;
m_features.dual_source_blend = m_device_features.dualSrcBlend; // TODO: Option to disable
if (!m_features.dual_source_blend)
Log_WarningPrintf("Vulkan driver is missing dual-source blending. This will have an impact on performance.");
m_features.noperspective_interpolation = true;
m_features.per_sample_shading = m_device_features.sampleRateShading;
m_features.supports_texture_buffers = true;
#ifdef __APPLE__
// Partial texture buffer uploads appear to be broken in macOS/MoltenVK.
m_features.texture_buffers_emulated_with_ssbo = true;
#else
const u32 max_texel_buffer_elements = m_device_properties.limits.maxTexelBufferElements;
Log_InfoPrintf("Max texel buffer elements: %u", max_texel_buffer_elements);
if (max_texel_buffer_elements < MIN_TEXEL_BUFFER_ELEMENTS)
{
m_features.texture_buffers_emulated_with_ssbo = true;
}
#endif
if (m_features.texture_buffers_emulated_with_ssbo)
Log_WarningPrintf("Emulating texture buffers with SSBOs.");
m_features.geometry_shaders = m_device_features.geometryShader;
m_features.partial_msaa_resolve = true;
m_features.shader_cache = true;
m_features.pipeline_cache = true;
return true;
}
void VulkanDevice::CopyTextureRegion(GPUTexture* dst, u32 dst_x, u32 dst_y, u32 dst_layer, u32 dst_level,
GPUTexture* src, u32 src_x, u32 src_y, u32 src_layer, u32 src_level, u32 width,
u32 height)
{
VulkanTexture* const S = static_cast<VulkanTexture*>(src);
VulkanTexture* const D = static_cast<VulkanTexture*>(dst);
if (S->GetState() == GPUTexture::State::Cleared)
{
// source is cleared. if destination is a render target, we can carry the clear forward
if (D->IsRenderTargetOrDepthStencil())
{
if (dst_level == 0 && dst_x == 0 && dst_y == 0 && width == D->GetWidth() && height == D->GetHeight())
{
// pass it forward if we're clearing the whole thing
if (S->IsDepthStencil())
D->SetClearDepth(S->GetClearDepth());
else
D->SetClearColor(S->GetClearColor());
return;
}
if (D->GetState() == GPUTexture::State::Cleared)
{
// destination is cleared, if it's the same colour and rect, we can just avoid this entirely
if (D->IsDepthStencil())
{
if (D->GetClearDepth() == S->GetClearDepth())
return;
}
else
{
if (D->GetClearColor() == S->GetClearColor())
return;
}
}
// TODO: Could use attachment clear here..
}
// commit the clear to the source first, then do normal copy
S->CommitClear();
}
// if the destination has been cleared, and we're not overwriting the whole thing, commit the clear first
// (the area outside of where we're copying to)
if (D->GetState() == GPUTexture::State::Cleared &&
(dst_level != 0 || dst_x != 0 || dst_y != 0 || width != D->GetWidth() || height != D->GetHeight()))
{
D->CommitClear();
}
// *now* we can do a normal image copy.
const VkImageAspectFlags src_aspect = (S->IsDepthStencil()) ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT;
const VkImageAspectFlags dst_aspect = (D->IsDepthStencil()) ? VK_IMAGE_ASPECT_DEPTH_BIT : VK_IMAGE_ASPECT_COLOR_BIT;
const VkImageCopy ic = {{src_aspect, src_level, src_layer, 1u},
{static_cast<s32>(src_x), static_cast<s32>(src_y), 0},
{dst_aspect, dst_level, dst_layer, 1u},
{static_cast<s32>(dst_x), static_cast<s32>(dst_y), 0},
{static_cast<u32>(width), static_cast<u32>(height), 1u}};
if (InRenderPass())
EndRenderPass();
S->SetUseFenceCounter(GetCurrentFenceCounter());
D->SetUseFenceCounter(GetCurrentFenceCounter());
S->TransitionToLayout((D == S) ? VulkanTexture::Layout::TransferSelf : VulkanTexture::Layout::TransferSrc);
D->TransitionToLayout((D == S) ? VulkanTexture::Layout::TransferSelf : VulkanTexture::Layout::TransferDst);
vkCmdCopyImage(GetCurrentCommandBuffer(), S->GetImage(), S->GetVkLayout(), D->GetImage(), D->GetVkLayout(), 1, &ic);
D->SetState(GPUTexture::State::Dirty);
}
void VulkanDevice::ResolveTextureRegion(GPUTexture* dst, u32 dst_x, u32 dst_y, u32 dst_layer, u32 dst_level,
GPUTexture* src, u32 src_x, u32 src_y, u32 width, u32 height)
{
DebugAssert((src_x + width) <= src->GetWidth());
DebugAssert((src_y + height) <= src->GetHeight());
DebugAssert(src->IsMultisampled());
DebugAssert(dst_level < dst->GetLevels() && dst_layer < dst->GetLayers());
DebugAssert((dst_x + width) <= dst->GetMipWidth(dst_level));
DebugAssert((dst_y + height) <= dst->GetMipHeight(dst_level));
DebugAssert(!dst->IsMultisampled() && src->IsMultisampled());
if (InRenderPass())
EndRenderPass();
VulkanTexture* D = static_cast<VulkanTexture*>(dst);
VulkanTexture* S = static_cast<VulkanTexture*>(src);
const VkCommandBuffer cmdbuf = GetCurrentCommandBuffer();
if (S->GetState() == GPUTexture::State::Cleared)
S->CommitClear(cmdbuf);
if (D->IsRenderTargetOrDepthStencil() && D->GetState() == GPUTexture::State::Cleared)
{
if (width < dst->GetWidth() || height < dst->GetHeight())
D->CommitClear(cmdbuf);
else
D->SetState(GPUTexture::State::Dirty);
}
S->TransitionSubresourcesToLayout(cmdbuf, 0, 1, 0, 1, S->GetLayout(), VulkanTexture::Layout::TransferSrc);
D->TransitionSubresourcesToLayout(cmdbuf, dst_layer, 1, dst_level, 1, D->GetLayout(),
VulkanTexture::Layout::TransferDst);
const VkImageResolve resolve = {{VK_IMAGE_ASPECT_COLOR_BIT, 0u, 0u, 1u},
{static_cast<s32>(src_x), static_cast<s32>(src_y), 0},
{VK_IMAGE_ASPECT_COLOR_BIT, dst_level, dst_layer, 1u},
{static_cast<s32>(dst_x), static_cast<s32>(dst_y), 0},
{width, height, 1}};
vkCmdResolveImage(cmdbuf, S->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, D->GetImage(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &resolve);
S->TransitionSubresourcesToLayout(cmdbuf, 0, 1, 0, 1, VulkanTexture::Layout::TransferSrc, S->GetLayout());
D->TransitionSubresourcesToLayout(cmdbuf, dst_layer, 1, dst_level, 1, VulkanTexture::Layout::TransferDst,
D->GetLayout());
}
void VulkanDevice::ClearRenderTarget(GPUTexture* t, u32 c)
{
GPUDevice::ClearRenderTarget(t, c);
if (InRenderPass() && m_current_framebuffer && m_current_framebuffer->GetRT() == t)
EndRenderPass();
}
void VulkanDevice::ClearDepth(GPUTexture* t, float d)
{
GPUDevice::ClearDepth(t, d);
if (InRenderPass() && m_current_framebuffer && m_current_framebuffer->GetDS() == t)
EndRenderPass();
}
void VulkanDevice::InvalidateRenderTarget(GPUTexture* t)
{
GPUDevice::InvalidateRenderTarget(t);
if (InRenderPass() && m_current_framebuffer &&
(m_current_framebuffer->GetRT() == t || m_current_framebuffer->GetDS() == t))
{
EndRenderPass();
}
}
bool VulkanDevice::CreateBuffers()
{
if (!m_vertex_buffer.Create(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VERTEX_BUFFER_SIZE))
{
Log_ErrorPrint("Failed to allocate vertex buffer");
return false;
}
if (!m_index_buffer.Create(VK_BUFFER_USAGE_INDEX_BUFFER_BIT, INDEX_BUFFER_SIZE))
{
Log_ErrorPrint("Failed to allocate index buffer");
return false;
}
if (!m_uniform_buffer.Create(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VERTEX_UNIFORM_BUFFER_SIZE))
{
Log_ErrorPrint("Failed to allocate uniform buffer");
return false;
}
if (!m_texture_upload_buffer.Create(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, TEXTURE_BUFFER_SIZE))
{
Log_ErrorPrint("Failed to allocate texture upload buffer");
return false;
}
return true;
}
void VulkanDevice::DestroyBuffers()
{
m_texture_upload_buffer.Destroy(false);
m_uniform_buffer.Destroy(false);
m_index_buffer.Destroy(false);
m_vertex_buffer.Destroy(false);
}
void VulkanDevice::MapVertexBuffer(u32 vertex_size, u32 vertex_count, void** map_ptr, u32* map_space,
u32* map_base_vertex)
{
const u32 req_size = vertex_size * vertex_count;
if (!m_vertex_buffer.ReserveMemory(req_size, vertex_size))
{
SubmitCommandBufferAndRestartRenderPass("out of vertex space");
if (!m_vertex_buffer.ReserveMemory(req_size, vertex_size))
Panic("Failed to allocate vertex space");
}
*map_ptr = m_vertex_buffer.GetCurrentHostPointer();
*map_space = m_vertex_buffer.GetCurrentSpace() / vertex_size;
*map_base_vertex = m_vertex_buffer.GetCurrentOffset() / vertex_size;
}
void VulkanDevice::UnmapVertexBuffer(u32 vertex_size, u32 vertex_count)
{
m_vertex_buffer.CommitMemory(vertex_size * vertex_count);
}
void VulkanDevice::MapIndexBuffer(u32 index_count, DrawIndex** map_ptr, u32* map_space, u32* map_base_index)
{
const u32 req_size = sizeof(DrawIndex) * index_count;
if (!m_index_buffer.ReserveMemory(req_size, sizeof(DrawIndex)))
{
SubmitCommandBufferAndRestartRenderPass("out of index space");
if (!m_index_buffer.ReserveMemory(req_size, sizeof(DrawIndex)))
Panic("Failed to allocate index space");
}
*map_ptr = reinterpret_cast<DrawIndex*>(m_index_buffer.GetCurrentHostPointer());
*map_space = m_index_buffer.GetCurrentSpace() / sizeof(DrawIndex);
*map_base_index = m_index_buffer.GetCurrentOffset() / sizeof(DrawIndex);
}
void VulkanDevice::UnmapIndexBuffer(u32 used_index_count)
{
m_index_buffer.CommitMemory(sizeof(DrawIndex) * used_index_count);
}
void VulkanDevice::PushUniformBuffer(const void* data, u32 data_size)
{
DebugAssert(data_size < UNIFORM_PUSH_CONSTANTS_SIZE);
vkCmdPushConstants(GetCurrentCommandBuffer(), GetCurrentVkPipelineLayout(), UNIFORM_PUSH_CONSTANTS_STAGES, 0,
data_size, data);
}
void* VulkanDevice::MapUniformBuffer(u32 size)
{
const u32 align = static_cast<u32>(m_device_properties.limits.minUniformBufferOffsetAlignment);
const u32 used_space = Common::AlignUpPow2(size, align);
if (!m_uniform_buffer.ReserveMemory(used_space + MAX_UNIFORM_BUFFER_SIZE, align))
{
SubmitCommandBufferAndRestartRenderPass("out of uniform space");
if (!m_uniform_buffer.ReserveMemory(used_space + MAX_UNIFORM_BUFFER_SIZE, align))
Panic("Failed to allocate uniform space.");
}
return m_uniform_buffer.GetCurrentHostPointer();
}
void VulkanDevice::UnmapUniformBuffer(u32 size)
{
m_uniform_buffer_position = m_uniform_buffer.GetCurrentOffset();
m_uniform_buffer.CommitMemory(size);
m_dirty_flags |= DIRTY_FLAG_DYNAMIC_OFFSETS;
}
bool VulkanDevice::CreateNullTexture()
{
m_null_texture = VulkanTexture::Create(1, 1, 1, 1, 1, GPUTexture::Type::RenderTarget, GPUTexture::Format::RGBA8,
VK_FORMAT_R8G8B8A8_UNORM);
if (!m_null_texture)
return false;
const VkCommandBuffer cmdbuf = GetCurrentCommandBuffer();
const VkImageSubresourceRange srr{VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, 1u};
const VkClearColorValue ccv{};
m_null_texture->TransitionToLayout(cmdbuf, VulkanTexture::Layout::ClearDst);
vkCmdClearColorImage(cmdbuf, m_null_texture->GetImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &ccv, 1, &srr);
m_null_texture->TransitionToLayout(cmdbuf, VulkanTexture::Layout::General);
Vulkan::SetObjectName(m_device, m_null_texture->GetImage(), "Null texture");
Vulkan::SetObjectName(m_device, m_null_texture->GetView(), "Null texture view");
// Bind null texture and point sampler state to all.
const VkSampler point_sampler = GetSampler(GPUSampler::GetNearestConfig());
if (point_sampler == VK_NULL_HANDLE)
return false;
for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++)
{
m_current_textures[i] = m_null_texture.get();
m_current_samplers[i] = point_sampler;
}
return true;
}
bool VulkanDevice::CreatePipelineLayouts()
{
Vulkan::DescriptorSetLayoutBuilder dslb;
Vulkan::PipelineLayoutBuilder plb;
{
dslb.AddBinding(0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT);
if ((m_ubo_ds_layout = dslb.Create(m_device)) == VK_NULL_HANDLE)
return false;
Vulkan::SetObjectName(m_device, m_ubo_ds_layout, "UBO Descriptor Set Layout");
}
{
dslb.AddBinding(0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT);
if ((m_single_texture_ds_layout = dslb.Create(m_device)) == VK_NULL_HANDLE)
return false;
Vulkan::SetObjectName(m_device, m_single_texture_ds_layout, "Single Texture Descriptor Set Layout");
}
{
dslb.AddBinding(0,
m_features.texture_buffers_emulated_with_ssbo ? VK_DESCRIPTOR_TYPE_STORAGE_BUFFER :
VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER,
1, VK_SHADER_STAGE_FRAGMENT_BIT);
if ((m_single_texture_buffer_ds_layout = dslb.Create(m_device)) == VK_NULL_HANDLE)
return false;
Vulkan::SetObjectName(m_device, m_single_texture_buffer_ds_layout, "Texture Buffer Descriptor Set Layout");
}
{
if (m_optional_extensions.vk_khr_push_descriptor)
dslb.SetPushFlag();
for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++)
dslb.AddBinding(i, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT);
if ((m_multi_texture_ds_layout = dslb.Create(m_device)) == VK_NULL_HANDLE)
return false;
Vulkan::SetObjectName(m_device, m_multi_texture_ds_layout, "Multi Texture Descriptor Set Layout");
}
{
VkPipelineLayout& pl = m_pipeline_layouts[static_cast<u8>(GPUPipeline::Layout::SingleTextureAndUBO)];
plb.AddDescriptorSet(m_ubo_ds_layout);
plb.AddDescriptorSet(m_single_texture_ds_layout);
if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE)
return false;
Vulkan::SetObjectName(m_device, pl, "Single Texture + UBO Pipeline Layout");
}
{
VkPipelineLayout& pl = m_pipeline_layouts[static_cast<u8>(GPUPipeline::Layout::SingleTextureAndPushConstants)];
plb.AddDescriptorSet(m_single_texture_ds_layout);
plb.AddPushConstants(UNIFORM_PUSH_CONSTANTS_STAGES, 0, UNIFORM_PUSH_CONSTANTS_SIZE);
if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE)
return false;
Vulkan::SetObjectName(m_device, pl, "Single Texture Pipeline Layout");
}
{
VkPipelineLayout& pl =
m_pipeline_layouts[static_cast<u8>(GPUPipeline::Layout::SingleTextureBufferAndPushConstants)];
plb.AddDescriptorSet(m_single_texture_buffer_ds_layout);
plb.AddPushConstants(UNIFORM_PUSH_CONSTANTS_STAGES, 0, UNIFORM_PUSH_CONSTANTS_SIZE);
if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE)
return false;
Vulkan::SetObjectName(m_device, pl, "Single Texture Buffer + UBO Pipeline Layout");
}
{
VkPipelineLayout& pl = m_pipeline_layouts[static_cast<u8>(GPUPipeline::Layout::MultiTextureAndUBO)];
plb.AddDescriptorSet(m_ubo_ds_layout);
plb.AddDescriptorSet(m_multi_texture_ds_layout);
if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE)
return false;
Vulkan::SetObjectName(m_device, pl, "Multi Texture + UBO Pipeline Layout");
}
{
VkPipelineLayout& pl = m_pipeline_layouts[static_cast<u8>(GPUPipeline::Layout::MultiTextureAndPushConstants)];
plb.AddDescriptorSet(m_multi_texture_ds_layout);
plb.AddPushConstants(UNIFORM_PUSH_CONSTANTS_STAGES, 0, UNIFORM_PUSH_CONSTANTS_SIZE);
if ((pl = plb.Create(m_device)) == VK_NULL_HANDLE)
return false;
Vulkan::SetObjectName(m_device, pl, "Multi Texture Pipeline Layout");
}
return true;
}
void VulkanDevice::DestroyPipelineLayouts()
{
for (VkPipelineLayout& pl : m_pipeline_layouts)
{
if (pl != VK_NULL_HANDLE)
{
vkDestroyPipelineLayout(m_device, pl, nullptr);
pl = VK_NULL_HANDLE;
}
}
auto destroy_dsl = [this](VkDescriptorSetLayout& l) {
if (l != VK_NULL_HANDLE)
{
vkDestroyDescriptorSetLayout(m_device, l, nullptr);
l = VK_NULL_HANDLE;
}
};
destroy_dsl(m_multi_texture_ds_layout);
destroy_dsl(m_single_texture_buffer_ds_layout);
destroy_dsl(m_single_texture_ds_layout);
destroy_dsl(m_ubo_ds_layout);
}
bool VulkanDevice::CreatePersistentDescriptorSets()
{
Vulkan::DescriptorSetUpdateBuilder dsub;
// TODO: is this a bad thing? choosing an upper bound.. so long as it's not going to fetch all of it :/
m_ubo_descriptor_set = AllocatePersistentDescriptorSet(m_ubo_ds_layout);
if (m_ubo_descriptor_set == VK_NULL_HANDLE)
return false;
dsub.AddBufferDescriptorWrite(m_ubo_descriptor_set, 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC,
m_uniform_buffer.GetBuffer(), 0, MAX_UNIFORM_BUFFER_SIZE);
dsub.Update(m_device, false);
return true;
}
void VulkanDevice::DestroyPersistentDescriptorSets()
{
if (m_ubo_descriptor_set != VK_NULL_HANDLE)
FreePersistentDescriptorSet(m_ubo_descriptor_set);
}
void VulkanDevice::RenderBlankFrame()
{
VkResult res = m_swap_chain->AcquireNextImage();
if (res != VK_SUCCESS)
{
Log_ErrorPrintf("Failed to acquire image for blank frame present");
return;
}
VkCommandBuffer cmdbuf = GetCurrentCommandBuffer();
const VkImage image = m_swap_chain->GetCurrentImage();
static constexpr VkImageSubresourceRange srr = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
VulkanTexture::TransitionSubresourcesToLayout(cmdbuf, image, GPUTexture::Type::RenderTarget, 0, 1, 0, 1,
VulkanTexture::Layout::Undefined, VulkanTexture::Layout::TransferDst);
vkCmdClearColorImage(cmdbuf, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, &s_present_clear_color.color, 1, &srr);
VulkanTexture::TransitionSubresourcesToLayout(cmdbuf, image, GPUTexture::Type::RenderTarget, 0, 1, 0, 1,
VulkanTexture::Layout::TransferDst, VulkanTexture::Layout::PresentSrc);
SubmitCommandBuffer(m_swap_chain.get(), !m_swap_chain->IsPresentModeSynchronizing());
MoveToNextCommandBuffer();
InvalidateCachedState();
}
void VulkanDevice::SetFramebuffer(GPUFramebuffer* fb)
{
if (m_current_framebuffer == fb)
return;
if (InRenderPass())
EndRenderPass();
m_current_framebuffer = static_cast<VulkanFramebuffer*>(fb);
}
void VulkanDevice::BeginRenderPass()
{
DebugAssert(!InRenderPass());
VkRenderPassBeginInfo bi = {
VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr, VK_NULL_HANDLE, VK_NULL_HANDLE, {}, 0u, nullptr};
std::array<VkClearValue, 2> clear_values;
if (m_current_framebuffer) [[likely]]
{
VkFormat rt_format = VK_FORMAT_UNDEFINED;
VkFormat ds_format = VK_FORMAT_UNDEFINED;
VkSampleCountFlagBits samples = VK_SAMPLE_COUNT_1_BIT;
VkAttachmentLoadOp rt_load_op = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
VkAttachmentStoreOp rt_store_op = VK_ATTACHMENT_STORE_OP_DONT_CARE;
VkAttachmentLoadOp ds_load_op = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
VkAttachmentStoreOp ds_store_op = VK_ATTACHMENT_STORE_OP_DONT_CARE;
VulkanTexture* rt = static_cast<VulkanTexture*>(m_current_framebuffer->GetRT());
if (rt)
{
samples = static_cast<VkSampleCountFlagBits>(rt->GetSamples());
rt_format = rt->GetVkFormat();
rt_store_op = VK_ATTACHMENT_STORE_OP_STORE;
switch (rt->GetState())
{
case GPUTexture::State::Cleared:
{
std::memcpy(clear_values[0].color.float32, rt->GetUNormClearColor().data(),
sizeof(clear_values[0].color.float32));
rt_load_op = VK_ATTACHMENT_LOAD_OP_CLEAR;
rt->SetState(GPUTexture::State::Dirty);
bi.pClearValues = clear_values.data();
bi.clearValueCount = 1;
}
break;
case GPUTexture::State::Invalidated:
{
// already DONT_CARE
rt->SetState(GPUTexture::State::Dirty);
}
break;
case GPUTexture::State::Dirty:
{
rt_load_op = VK_ATTACHMENT_LOAD_OP_LOAD;
}
break;
default:
UnreachableCode();
break;
}
rt->TransitionToLayout(VulkanTexture::Layout::ColorAttachment);
rt->SetUseFenceCounter(GetCurrentFenceCounter());
}
VulkanTexture* ds = static_cast<VulkanTexture*>(m_current_framebuffer->GetDS());
if (ds)
{
samples = static_cast<VkSampleCountFlagBits>(ds->GetSamples());
ds_format = ds->GetVkFormat();
ds_store_op = VK_ATTACHMENT_STORE_OP_STORE;
switch (ds->GetState())
{
case GPUTexture::State::Cleared:
{
const u32 idx = rt ? 1 : 0;
clear_values[idx].depthStencil = {ds->GetClearDepth(), 0u};
ds_load_op = VK_ATTACHMENT_LOAD_OP_CLEAR;
ds->SetState(GPUTexture::State::Dirty);
bi.pClearValues = clear_values.data();
bi.clearValueCount = idx + 1;
}
break;
case GPUTexture::State::Invalidated:
{
// already DONT_CARE
ds->SetState(GPUTexture::State::Dirty);
}
break;
case GPUTexture::State::Dirty:
{
ds_load_op = VK_ATTACHMENT_LOAD_OP_LOAD;
}
break;
default:
UnreachableCode();
break;
}
ds->TransitionToLayout(VulkanTexture::Layout::DepthStencilAttachment);
ds->SetUseFenceCounter(GetCurrentFenceCounter());
}
bi.framebuffer = m_current_framebuffer->GetFramebuffer();
bi.renderPass = m_current_render_pass =
GetRenderPass(rt_format, ds_format, samples, rt_load_op, rt_store_op, ds_load_op, ds_store_op);
bi.renderArea.extent = {m_current_framebuffer->GetWidth(), m_current_framebuffer->GetHeight()};
}
else
{
// Re-rendering to swap chain.
bi.framebuffer = m_swap_chain->GetCurrentFramebuffer();
bi.renderPass = m_current_render_pass =
GetRenderPass(m_swap_chain->GetImageFormat(), VK_FORMAT_UNDEFINED, VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE);
bi.renderArea.extent = {m_swap_chain->GetWidth(), m_swap_chain->GetHeight()};
}
DebugAssert(m_current_render_pass);
// All textures should be in shader read only optimal already, but just in case..
const u32 num_textures = GetActiveTexturesForLayout(m_current_pipeline_layout);
for (u32 i = 0; i < num_textures; i++)
m_current_textures[i]->TransitionToLayout(VulkanTexture::Layout::ShaderReadOnly);
// TODO: Stats
vkCmdBeginRenderPass(GetCurrentCommandBuffer(), &bi, VK_SUBPASS_CONTENTS_INLINE);
// If this is a new command buffer, bind the pipeline and such.
if (m_dirty_flags & DIRTY_FLAG_INITIAL)
SetInitialPipelineState();
}
void VulkanDevice::BeginSwapChainRenderPass()
{
DebugAssert(!InRenderPass());
const VkCommandBuffer cmdbuf = GetCurrentCommandBuffer();
const VkImage swap_chain_image = m_swap_chain->GetCurrentImage();
// Swap chain images start in undefined
VulkanTexture::TransitionSubresourcesToLayout(cmdbuf, swap_chain_image, GPUTexture::Type::RenderTarget, 0, 1, 0, 1,
VulkanTexture::Layout::Undefined,
VulkanTexture::Layout::ColorAttachment);
// All textures should be in shader read only optimal already, but just in case..
const u32 num_textures = GetActiveTexturesForLayout(m_current_pipeline_layout);
for (u32 i = 0; i < num_textures; i++)
m_current_textures[i]->TransitionToLayout(VulkanTexture::Layout::ShaderReadOnly);
const VkRenderPass render_pass =
GetRenderPass(m_swap_chain->GetImageFormat(), VK_FORMAT_UNDEFINED, VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_STORE);
DebugAssert(render_pass);
const VkRenderPassBeginInfo rp = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
nullptr,
render_pass,
m_swap_chain->GetCurrentFramebuffer(),
{{0, 0}, {m_swap_chain->GetWidth(), m_swap_chain->GetHeight()}},
1u,
&s_present_clear_color};
vkCmdBeginRenderPass(GetCurrentCommandBuffer(), &rp, VK_SUBPASS_CONTENTS_INLINE);
m_current_render_pass = render_pass;
m_current_framebuffer = nullptr;
// Clear pipeline, it's likely incompatible.
m_current_pipeline = nullptr;
}
bool VulkanDevice::InRenderPass()
{
return m_current_render_pass != VK_NULL_HANDLE;
}
void VulkanDevice::EndRenderPass()
{
DebugAssert(m_current_render_pass != VK_NULL_HANDLE);
// TODO: stats
m_current_render_pass = VK_NULL_HANDLE;
vkCmdEndRenderPass(GetCurrentCommandBuffer());
}
void VulkanDevice::UnbindFramebuffer(VulkanFramebuffer* fb)
{
if (m_current_framebuffer != fb)
return;
if (InRenderPass())
EndRenderPass();
m_current_framebuffer = nullptr;
}
void VulkanDevice::UnbindFramebuffer(VulkanTexture* tex)
{
if (!m_current_framebuffer)
return;
if (m_current_framebuffer->GetRT() != tex && m_current_framebuffer->GetDS() != tex)
return;
if (InRenderPass())
EndRenderPass();
m_current_framebuffer = nullptr;
}
void VulkanDevice::SetPipeline(GPUPipeline* pipeline)
{
// First draw? Bind everything.
if (m_dirty_flags & DIRTY_FLAG_INITIAL)
{
m_current_pipeline = static_cast<VulkanPipeline*>(pipeline);
if (!m_current_pipeline)
return;
SetInitialPipelineState();
return;
}
else if (m_current_pipeline == pipeline)
{
return;
}
m_current_pipeline = static_cast<VulkanPipeline*>(pipeline);
vkCmdBindPipeline(m_current_command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, m_current_pipeline->GetPipeline());
if (m_current_pipeline_layout != m_current_pipeline->GetLayout())
{
m_current_pipeline_layout = m_current_pipeline->GetLayout();
m_dirty_flags |= DIRTY_FLAG_PIPELINE_LAYOUT;
}
}
void VulkanDevice::UnbindPipeline(VulkanPipeline* pl)
{
if (m_current_pipeline != pl)
return;
m_current_pipeline = nullptr;
}
void VulkanDevice::InvalidateCachedState()
{
m_dirty_flags = ALL_DIRTY_STATE;
m_current_render_pass = VK_NULL_HANDLE;
m_current_framebuffer = nullptr;
m_current_pipeline = nullptr;
}
VkPipelineLayout VulkanDevice::GetCurrentVkPipelineLayout() const
{
return m_pipeline_layouts[static_cast<u8>(m_current_pipeline_layout)];
}
void VulkanDevice::SetInitialPipelineState()
{
DebugAssert(m_current_pipeline);
m_dirty_flags &= ~DIRTY_FLAG_INITIAL;
const VkDeviceSize offset = 0;
const VkCommandBuffer cmdbuf = GetCurrentCommandBuffer();
vkCmdBindVertexBuffers(cmdbuf, 0, 1, m_vertex_buffer.GetBufferPtr(), &offset);
vkCmdBindIndexBuffer(cmdbuf, m_index_buffer.GetBuffer(), 0, VK_INDEX_TYPE_UINT16);
m_current_pipeline_layout = m_current_pipeline->GetLayout();
vkCmdBindPipeline(cmdbuf, VK_PIPELINE_BIND_POINT_GRAPHICS, m_current_pipeline->GetPipeline());
const VkViewport vp = {static_cast<float>(m_current_viewport.left),
static_cast<float>(m_current_viewport.top),
static_cast<float>(m_current_viewport.GetWidth()),
static_cast<float>(m_current_viewport.GetHeight()),
0.0f,
1.0f};
vkCmdSetViewport(GetCurrentCommandBuffer(), 0, 1, &vp);
const VkRect2D vrc = {
{m_current_scissor.left, m_current_scissor.top},
{static_cast<u32>(m_current_scissor.GetWidth()), static_cast<u32>(m_current_scissor.GetHeight())}};
vkCmdSetScissor(GetCurrentCommandBuffer(), 0, 1, &vrc);
}
void VulkanDevice::SetTextureSampler(u32 slot, GPUTexture* texture, GPUSampler* sampler)
{
VulkanTexture* T = texture ? static_cast<VulkanTexture*>(texture) : m_null_texture.get();
const VkSampler vsampler = static_cast<VulkanSampler*>(sampler ? sampler : m_nearest_sampler.get())->GetSampler();
if (m_current_textures[slot] != texture || m_current_samplers[slot] != vsampler)
{
m_current_textures[slot] = T;
m_current_samplers[slot] = vsampler;
m_dirty_flags |= DIRTY_FLAG_TEXTURES_OR_SAMPLERS;
}
if (T)
{
T->SetUseFenceCounter(GetCurrentFenceCounter());
if (T->GetLayout() != VulkanTexture::Layout::ShaderReadOnly)
{
if (InRenderPass())
EndRenderPass();
T->TransitionToLayout(VulkanTexture::Layout::ShaderReadOnly);
}
}
}
void VulkanDevice::SetTextureBuffer(u32 slot, GPUTextureBuffer* buffer)
{
DebugAssert(slot == 0);
if (m_current_texture_buffer == buffer)
return;
m_current_texture_buffer = static_cast<VulkanTextureBuffer*>(buffer);
if (m_current_pipeline_layout == GPUPipeline::Layout::SingleTextureBufferAndPushConstants)
m_dirty_flags |= DIRTY_FLAG_TEXTURES_OR_SAMPLERS;
}
void VulkanDevice::UnbindTexture(VulkanTexture* tex)
{
for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++)
{
if (m_current_textures[i] == tex)
{
m_current_textures[i] = m_null_texture.get();
m_dirty_flags |= DIRTY_FLAG_TEXTURES_OR_SAMPLERS;
}
}
}
void VulkanDevice::UnbindTextureBuffer(VulkanTextureBuffer* buf)
{
if (m_current_texture_buffer != buf)
return;
m_current_texture_buffer = nullptr;
if (m_current_pipeline_layout == GPUPipeline::Layout::SingleTextureBufferAndPushConstants)
m_dirty_flags |= DIRTY_FLAG_TEXTURES_OR_SAMPLERS;
}
void VulkanDevice::SetViewport(s32 x, s32 y, s32 width, s32 height)
{
const Common::Rectangle<s32> rc = Common::Rectangle<s32>::FromExtents(x, y, width, height);
if (m_current_viewport == rc)
return;
m_current_viewport = rc;
if (m_dirty_flags & DIRTY_FLAG_INITIAL)
return;
const VkViewport vp = {
static_cast<float>(x), static_cast<float>(y), static_cast<float>(width), static_cast<float>(height), 0.0f, 1.0f};
vkCmdSetViewport(GetCurrentCommandBuffer(), 0, 1, &vp);
}
void VulkanDevice::SetScissor(s32 x, s32 y, s32 width, s32 height)
{
const Common::Rectangle<s32> rc = Common::Rectangle<s32>::FromExtents(x, y, width, height);
if (m_current_scissor == rc)
return;
m_current_scissor = rc;
if (m_dirty_flags & DIRTY_FLAG_INITIAL)
return;
const VkRect2D vrc = {{x, y}, {static_cast<u32>(width), static_cast<u32>(height)}};
vkCmdSetScissor(GetCurrentCommandBuffer(), 0, 1, &vrc);
}
void VulkanDevice::PreDrawCheck()
{
DebugAssert(!(m_dirty_flags & DIRTY_FLAG_INITIAL));
const u32 dirty = std::exchange(m_dirty_flags, 0);
if (dirty != 0)
{
if (dirty & (DIRTY_FLAG_PIPELINE_LAYOUT | DIRTY_FLAG_DYNAMIC_OFFSETS | DIRTY_FLAG_TEXTURES_OR_SAMPLERS))
{
if (!UpdateDescriptorSets(dirty))
{
SubmitCommandBufferAndRestartRenderPass("out of descriptor sets");
PreDrawCheck();
return;
}
}
}
if (!InRenderPass())
BeginRenderPass();
}
template<GPUPipeline::Layout layout>
bool VulkanDevice::UpdateDescriptorSetsForLayout(bool new_layout, bool new_dynamic_offsets)
{
std::array<VkDescriptorSet, 2> ds;
u32 first_ds = 0;
u32 num_ds = 0;
if constexpr (layout == GPUPipeline::Layout::SingleTextureAndUBO || layout == GPUPipeline::Layout::MultiTextureAndUBO)
{
if (new_layout || new_dynamic_offsets)
{
ds[num_ds++] = m_ubo_descriptor_set;
new_dynamic_offsets = true;
}
}
if constexpr (layout == GPUPipeline::Layout::SingleTextureAndUBO ||
layout == GPUPipeline::Layout::SingleTextureAndPushConstants)
{
DebugAssert(m_current_textures[0] && m_current_samplers[0] != VK_NULL_HANDLE);
ds[num_ds++] = m_current_textures[0]->GetDescriptorSetWithSampler(m_current_samplers[0]);
}
else if constexpr (layout == GPUPipeline::Layout::SingleTextureBufferAndPushConstants)
{
DebugAssert(m_current_texture_buffer);
ds[num_ds++] = m_current_texture_buffer->GetDescriptorSet();
}
else if constexpr (layout == GPUPipeline::Layout::MultiTextureAndUBO ||
layout == GPUPipeline::Layout::MultiTextureAndPushConstants)
{
Vulkan::DescriptorSetUpdateBuilder dsub;
if (m_optional_extensions.vk_khr_push_descriptor)
{
for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++)
{
DebugAssert(m_current_textures[i] && m_current_samplers[i] != VK_NULL_HANDLE);
dsub.AddCombinedImageSamplerDescriptorWrite(VK_NULL_HANDLE, i, m_current_textures[i]->GetView(),
m_current_samplers[i], VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
const u32 set = (layout == GPUPipeline::Layout::MultiTextureAndUBO) ? 1 : 0;
dsub.PushUpdate(GetCurrentCommandBuffer(), VK_PIPELINE_BIND_POINT_GRAPHICS,
m_pipeline_layouts[static_cast<u8>(m_current_pipeline_layout)], set);
if (num_ds == 0)
return true;
}
else
{
VkDescriptorSet tds = AllocateDescriptorSet(m_multi_texture_ds_layout);
if (tds == VK_NULL_HANDLE)
return false;
ds[num_ds++] = tds;
for (u32 i = 0; i < MAX_TEXTURE_SAMPLERS; i++)
{
DebugAssert(m_current_textures[i] && m_current_samplers[i] != VK_NULL_HANDLE);
dsub.AddCombinedImageSamplerDescriptorWrite(tds, i, m_current_textures[i]->GetView(), m_current_samplers[i],
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
dsub.Update(m_device, false);
}
}
DebugAssert(num_ds > 0);
vkCmdBindDescriptorSets(GetCurrentCommandBuffer(), VK_PIPELINE_BIND_POINT_GRAPHICS,
m_pipeline_layouts[static_cast<u8>(m_current_pipeline_layout)], first_ds, num_ds, ds.data(),
static_cast<u32>(new_dynamic_offsets),
new_dynamic_offsets ? &m_uniform_buffer_position : nullptr);
return true;
}
bool VulkanDevice::UpdateDescriptorSets(u32 dirty)
{
const bool new_layout = (dirty & DIRTY_FLAG_PIPELINE_LAYOUT) != 0;
const bool new_dynamic_offsets = (dirty & DIRTY_FLAG_DYNAMIC_OFFSETS) != 0;
switch (m_current_pipeline_layout)
{
case GPUPipeline::Layout::SingleTextureAndUBO:
return UpdateDescriptorSetsForLayout<GPUPipeline::Layout::SingleTextureAndUBO>(new_layout, new_dynamic_offsets);
case GPUPipeline::Layout::SingleTextureAndPushConstants:
return UpdateDescriptorSetsForLayout<GPUPipeline::Layout::SingleTextureAndPushConstants>(new_layout, false);
case GPUPipeline::Layout::SingleTextureBufferAndPushConstants:
return UpdateDescriptorSetsForLayout<GPUPipeline::Layout::SingleTextureBufferAndPushConstants>(new_layout, false);
case GPUPipeline::Layout::MultiTextureAndUBO:
return UpdateDescriptorSetsForLayout<GPUPipeline::Layout::MultiTextureAndUBO>(new_layout, new_dynamic_offsets);
case GPUPipeline::Layout::MultiTextureAndPushConstants:
return UpdateDescriptorSetsForLayout<GPUPipeline::Layout::MultiTextureAndPushConstants>(new_layout, false);
default:
UnreachableCode();
}
}
void VulkanDevice::Draw(u32 vertex_count, u32 base_vertex)
{
PreDrawCheck();
vkCmdDraw(GetCurrentCommandBuffer(), vertex_count, 1, base_vertex, 0);
}
void VulkanDevice::DrawIndexed(u32 index_count, u32 base_index, u32 base_vertex)
{
PreDrawCheck();
vkCmdDrawIndexed(GetCurrentCommandBuffer(), index_count, 1, base_index, base_vertex, 0);
}