Supermodel/Src/Graphics/New3D/R3DShaderTriangles.h

288 lines
7.9 KiB
C
Raw Permalink Normal View History

#ifndef _R3DSHADERTRIANGLES_H_
#define _R3DSHADERTRIANGLES_H_
static const char *vertexShaderR3D = R"glsl(
#version 410 core
// uniforms
uniform float modelScale;
uniform float nodeAlpha;
uniform float cota;
uniform mat4 modelMat;
uniform mat4 projMat;
uniform bool translatorMap;
// attributes
in vec4 inVertex;
in vec3 inNormal;
in vec2 inTexCoord;
in vec4 inColour;
in vec3 inFaceNormal; // used to emulate r3d culling
in float inFixedShade;
in float inTextureNP;
// outputs to fragment shader
out vec3 fsViewVertex;
out vec3 fsViewNormal; // per vertex normal vector
out vec2 fsTexCoord;
out vec4 fsColor;
out float fsDiscard; // can't have varying bool (glsl spec)
out float fsFixedShade;
out float fsLODBase;
vec4 GetColour(vec4 colour)
{
vec4 c = colour;
if(translatorMap) {
c.rgb *= 16.0;
}
c.a *= nodeAlpha;
return c;
}
float CalcBackFace(in vec3 viewVertex)
{
vec3 vt = viewVertex - vec3(0.0);
vec3 vn = (mat3(modelMat) * inFaceNormal);
// dot product of face normal with view direction
return dot(vt, vn);
}
void main(void)
{
fsViewVertex = vec3(modelMat * inVertex);
fsViewNormal = (mat3(modelMat) * inNormal) / modelScale;
fsDiscard = CalcBackFace(fsViewVertex);
fsColor = GetColour(inColour);
fsTexCoord = inTexCoord;
fsFixedShade = inFixedShade;
fsLODBase = -fsDiscard * cota * inTextureNP;
gl_Position = projMat * modelMat * inVertex;
}
)glsl";
static const char *fragmentShaderR3D = R"glsl(
#version 410 core
uniform usampler2D textureBank[2]; // entire texture sheet
// texturing
uniform bool textureEnabled;
uniform bool microTexture;
uniform float microTextureMinLOD;
uniform int microTextureID;
uniform ivec4 baseTexInfo; // x/y are x,y positions in the texture sheet. z/w are with and height
uniform int baseTexType;
uniform bool textureInverted;
uniform bool textureAlpha;
uniform bool alphaTest;
uniform bool discardAlpha;
uniform ivec2 textureWrapMode;
uniform int texturePage;
// general
uniform vec3 fogColour;
uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)
uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit
uniform vec3 spotColor; // spotlight RGB color
uniform vec3 spotFogColor; // spotlight RGB color on fog
uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)
uniform bool lightEnabled; // lighting enabled (1.0) or luminous (0.0), drawn at full intensity
uniform bool sunClamp; // not used by daytona and la machine guns
uniform bool intensityClamp; // some games such as daytona and
uniform bool specularEnabled; // specular enabled
uniform float specularValue; // specular coefficient
uniform float shininess; // specular shininess
uniform float fogIntensity;
uniform float fogDensity;
uniform float fogStart;
uniform float fogAttenuation;
uniform float fogAmbient;
uniform bool fixedShading;
uniform bool smoothShading;
uniform int hardwareStep;
uniform int colourLayer;
uniform bool polyAlpha;
// matrices (shared with vertex shader)
uniform mat4 projMat;
//interpolated inputs from vertex shader
in vec3 fsViewVertex;
in vec3 fsViewNormal; // per vertex normal vector
in vec4 fsColor;
in vec2 fsTexCoord;
in float fsDiscard;
in float fsFixedShade;
in float fsLODBase;
//outputs
layout(location = 0) out vec4 out0; // opaque
layout(location = 1) out vec4 out1; // trans layer 1
layout(location = 2) out vec4 out2; // trans layer 2
// forward declarations (see common file)
float CalcFog();
void Step15Luminous(inout vec4 colour);
vec4 GetTextureValue();
void WriteOutputs(vec4 colour, int layer);
float Sqr(float a);
float SqrLength(vec2 a);
void main()
{
vec4 tex1Data;
vec4 colData;
vec4 finalData;
vec4 fogData;
if(fsDiscard > 0) {
discard; //emulate back face culling here
}
gl_FragDepth = projMat[3][2] * gl_FragCoord.w;
fogData = vec4(fogColour.rgb * fogAmbient, CalcFog());
tex1Data = vec4(1.0, 1.0, 1.0, 1.0);
if(textureEnabled) {
tex1Data = GetTextureValue();
}
colData = fsColor;
Step15Luminous(colData); // no-op for step 2.0+
finalData = tex1Data * colData;
if (finalData.a < (1.0/32.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports
discard;
}
float ellipse;
ellipse = SqrLength((gl_FragCoord.xy - spotEllipse.xy) / spotEllipse.zw); // decay rate = square of distance from center
ellipse = 1.0 - ellipse; // invert
ellipse = max(0.0, ellipse); // clamp
// Compute spotlight and apply lighting
float enable, absExtent, d, inv_r, range;
// start of spotlight
enable = step(spotRange.x, -fsViewVertex.z);
if (spotRange.y == 0.0) {
range = 0.0;
}
else {
absExtent = abs(spotRange.y);
d = spotRange.x + absExtent + fsViewVertex.z;
d = min(d, 0.0);
// slope of decay function
inv_r = 1.0 / (1.0 + absExtent);
// inverse-linear falloff
// Reference: https://imdoingitwrong.wordpress.com/2011/01/31/light-attenuation/
// y = 1 / (d/r + 1)^2
range = 1.0 / Sqr(d * inv_r - 1.0);
range *= enable;
}
float lobeEffect = range * ellipse;
float lobeFogEffect = enable * ellipse;
if (lightEnabled) {
vec3 lightIntensity;
vec3 sunVector; // sun lighting vector (as reflecting away from vertex)
float sunFactor; // sun light projection along vertex normal (0.0 to 1.0)
// Sun angle
sunVector = lighting[0];
// Compute diffuse factor for sunlight
if(fixedShading) {
sunFactor = fsFixedShade;
}
else {
sunFactor = dot(sunVector, fsViewNormal);
}
// Clamp ceil, fix for upscaled models without "modelScale" defined
sunFactor = clamp(sunFactor,-1.0,1.0);
// Optional clamping, value is allowed to be negative
// We suspect that translucent polygons are always clamped (e.g. lasers in Daytona 2)
if(sunClamp || polyAlpha) {
sunFactor = max(sunFactor,0.0);
}
// Total light intensity: sum of all components
lightIntensity = vec3(sunFactor*lighting[1].x + lighting[1].y); // diffuse + ambient
lightIntensity.rgb += spotColor*lobeEffect;
// Upper clamp is optional, step 1.5+ games will drive brightness beyond 100%
if(intensityClamp) {
lightIntensity = min(lightIntensity,1.0);
}
finalData.rgb *= lightIntensity;
// for now assume fixed shading doesn't work with specular
if (specularEnabled) {
float specularFactor;
if (smoothShading)
{
// Always clamp floor to zero
float NdotL = max(0.0, sunFactor);
vec4 expIndex = vec4(8.0, 16.0, 32.0, 64.0);
vec4 multIndex = vec4(1.6, 1.6, 2.4, 3.2);
float exponent = expIndex[int(shininess)];
specularFactor = pow(NdotL, exponent);
specularFactor *= multIndex[int(shininess)];
}
else
{
// flat shaded polys use Phong reflection model (R dot V) without any exponent or multiplier
// V = (0.0, 0.0, 1.0) is used by Model 3 as a fast approximation, so R dot V = R.z
vec3 R = reflect(-sunVector, fsViewNormal);
specularFactor = max(0.0, R.z);
}
specularFactor *= specularValue;
specularFactor *= lighting[1].x;
if (colData.a < 1.0) {
/// Specular hi-light affects translucent polygons alpha channel ///
finalData.a = max(finalData.a, specularFactor);
}
finalData.rgb += vec3(specularFactor);
}
}
// Final clamp: we need it for proper shading in dimmed light and dark ambients
finalData.rgb = min(finalData.rgb, vec3(1.0));
// Spotlight on fog
vec3 lSpotFogColor = spotFogColor * fogAttenuation * fogColour.rgb * lobeFogEffect;
// Fog & spotlight applied
finalData.rgb = mix(finalData.rgb, fogData.rgb + lSpotFogColor, fogData.a);
// Write outputs to colour buffers
WriteOutputs(finalData,colourLayer);
}
)glsl";
#endif