Updated Fragment_NoSpotlight.glsl (fragment shader for legacy engine without spot light)

This commit is contained in:
Bart Trzynadlowski 2016-07-04 01:00:24 +00:00
parent 732bff2769
commit 0ab486645c

View file

@ -1,202 +1,196 @@
/** /**
** Supermodel ** Supermodel
** A Sega Model 3 Arcade Emulator. ** A Sega Model 3 Arcade Emulator.
** Copyright 2011 Bart Trzynadlowski, Nik Henson ** Copyright 2011-2016 Bart Trzynadlowski, Nik Henson
** **
** This file is part of Supermodel. ** This file is part of Supermodel.
** **
** Supermodel is free software: you can redistribute it and/or modify it under ** Supermodel is free software: you can redistribute it and/or modify it under
** the terms of the GNU General Public License as published by the Free ** the terms of the GNU General Public License as published by the Free
** Software Foundation, either version 3 of the License, or (at your option) ** Software Foundation, either version 3 of the License, or (at your option)
** any later version. ** any later version.
** **
** Supermodel is distributed in the hope that it will be useful, but WITHOUT ** Supermodel is distributed in the hope that it will be useful, but WITHOUT
** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ** ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for ** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
** more details. ** more details.
** **
** You should have received a copy of the GNU General Public License along ** You should have received a copy of the GNU General Public License along
** with Supermodel. If not, see <http://www.gnu.org/licenses/>. ** with Supermodel. If not, see <http://www.gnu.org/licenses/>.
**/ **/
/* /*
* Fragment_NoSpotlight.glsl * Fragment.glsl
* *
* Fragment shader for 3D rendering. Spotlight effect removed. Fixes fragment * Fragment shader for 3D rendering.
* shader link errors on older ATI Radeon GPUs. */
*
* To load external fragment shaders, use the -frag-shader=<file> option when #version 120
* starting Supermodel.
*/ // Global uniforms
uniform sampler2D textureMap; // complete texture map, 2048x2048 texels
#version 120 uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)
uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit
// Global uniforms uniform vec3 spotColor; // spotlight RGB color
uniform sampler2D textureMap; // complete texture map, 2048x2048 texels uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)
uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height) uniform float mapSize; // texture map size (2048,4096,6144 etc)
uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit
uniform vec3 spotColor; // spotlight RGB color // Inputs from vertex shader
uniform float mapSize; // texture map size (2048,4096,6144 etc) varying vec4 fsSubTexture; // .x=texture X, .y=texture Y, .z=texture width, .w=texture height (all in texels)
varying vec4 fsTexParams; // .x=texture enable (if 1, else 0), .y=use transparency (if > 0), .z=U wrap mode (1=mirror, 0=repeat), .w=V wrap mode
// Inputs from vertex shader varying float fsTexFormat; // T1RGB5 contour texture (if > 0)
varying vec4 fsSubTexture; // .x=texture X, .y=texture Y, .z=texture width, .w=texture height (all in texels) varying float fsTexMap; // texture map number
varying vec4 fsTexParams; // .x=texture enable (if 1, else 0), .y=use transparency (if > 0), .z=U wrap mode (1=mirror, 0=repeat), .w=V wrap mode varying float fsTransLevel; // translucence level, 0.0 (transparent) to 1.0 (opaque)
varying float fsTexFormat; // .x=T1RGB5 contour texture (if > 0) varying vec3 fsLightIntensity; // lighting intensity
varying float fsTransLevel; // translucence level, 0.0 (transparent) to 1.0 (opaque) varying float fsSpecularTerm; // specular highlight
varying vec3 fsLightIntensity; // lighting intensity varying float fsFogFactor; // fog factor
varying float fsFogFactor; // fog factor varying float fsViewZ; // Z distance to fragment from viewpoint at origin
varying float fsViewZ; // Z distance to fragment from viewpoint at origin
/*
/* * WrapTexelCoords():
* WrapTexelCoords(): *
* * Computes the normalized OpenGL S,T coordinates within the 2048x2048 texture
* Computes the normalized OpenGL S,T coordinates within the 2048x2048 texture * sheet, taking into account wrapping behavior.
* sheet, taking into account wrapping behavior. *
* * Computing normalized OpenGL texture coordinates (0 to 1) within the
* Computing normalized OpenGL texture coordinates (0 to 1) within the * Real3D texture sheet:
* Real3D texture sheet: *
* * If the texture is not mirrored, we simply have to clamp the
* If the texture is not mirrored, we simply have to clamp the * coordinates to fit within the texture dimensions, add the texture
* coordinates to fit within the texture dimensions, add the texture * X, Y position to select the appropriate one, and normalize by 2048
* X, Y position to select the appropriate one, and normalize by 2048 * (the dimensions of the Real3D texture sheet).
* (the dimensions of the Real3D texture sheet). *
* * = [(u,v)%(w,h)+(x,y)]/(2048,2048)
* = [(u,v)%(w,h)+(x,y)]/(2048,2048) *
* * If mirroring is enabled, textures are mirrored every odd multiple of
* If mirroring is enabled, textures are mirrored every odd multiple of * the original texture. To detect whether we are in an odd multiple,
* the original texture. To detect whether we are in an odd multiple, * simply divide the coordinate by the texture dimension and check
* simply divide the coordinate by the texture dimension and check * whether the result is odd. Then, clamp the coordinates as before but
* whether the result is odd. Then, clamp the coordinates as before but * subtract from the last texel to mirror them:
* subtract from the last texel to mirror them: *
* * = [M*((w-1,h-1)-(u,v)%(w,h)) + (1-M)*(u,v)%(w,h) + (x,y)]/(2048,2048)
* = [M*((w-1,h-1)-(u,v)%(w,h)) + (1-M)*(u,v)%(w,h) + (x,y)]/(2048,2048) * where M is 1.0 if the texture must be mirrored.
* where M is 1.0 if the texture must be mirrored. *
* * As an optimization, this function computes TWO texture coordinates
* As an optimization, this function computes TWO texture coordinates * simultaneously. The first is texCoord.xy, the second is in .zw. The other
* simultaneously. The first is texCoord.xy, the second is in .zw. The other * parameters must have .xy = .zw.
* parameters must have .xy = .zw. */
*/ vec4 WrapTexelCoords(vec4 texCoord, vec4 texOffset, vec4 texSize, vec4 mirrorEnable)
vec4 WrapTexelCoords(vec4 texCoord, vec4 texOffset, vec4 texSize, vec4 mirrorEnable) {
{ vec4 clampedCoord, mirror, glTexCoord;
vec4 clampedCoord, mirror, glTexCoord;
clampedCoord = mod(texCoord,texSize); // clamp coordinates to within texture size
clampedCoord = mod(texCoord,texSize); // clamp coordinates to within texture size mirror = mirrorEnable * mod(floor(texCoord/texSize),2.0); // whether this texel needs to be mirrored
mirror = mirrorEnable * mod(floor(texCoord/texSize),2.0); // whether this texel needs to be mirrored
glTexCoord = ( mirror*(texSize-clampedCoord) +
glTexCoord = ( mirror*(texSize-clampedCoord) + (vec4(1.0,1.0,1.0,1.0)-mirror)*clampedCoord +
(vec4(1.0,1.0,1.0,1.0)-mirror)*clampedCoord + texOffset
texOffset ) / mapSize;
) / mapSize; return glTexCoord;
/* }
glTexCoord = ( mirror*(texSize-vec4(1.0,1.0,1.0,1.0)-clampedCoord) +
(vec4(1.0,1.0,1.0,1.0)-mirror)*clampedCoord + /*
texOffset * main():
) / mapSize; *
*/ * Fragment shader entry point.
return glTexCoord; */
}
void main(void)
/* {
* main(): vec4 uv_top, uv_bot, c[4];
* vec2 r;
* Fragment shader entry point. vec4 fragColor;
*/ vec2 ellipse;
vec3 lightIntensity;
void main(void) float insideSpot;
{ int x;
vec4 uv_top, uv_bot, c[4];
vec2 r; // Get polygon color for untextured polygons (textured polygons will overwrite)
vec4 fragColor; if (fsTexParams.x < 0.5)
vec2 ellipse; fragColor = gl_Color;
vec3 lightIntensity; else
float insideSpot; // Textured polygons: set fragment color to texel value
{
// Get polygon color for untextured polygons (textured polygons will overwrite) /*
if (fsTexParams.x < 0.5) * Bilinear Filtering
fragColor = gl_Color; *
else * In order to get this working on ATI, the number of operations is
// Textured polygons: set fragment color to texel value * reduced by putting everything into vec4s. uv_top holds the UV
{ * coordinates for the top two texels (.xy=left, .zw=right) and uv_bot
/* * is for the lower two.
* Bilinear Filtering */
*
* In order to get this working on ATI, the number of operations is // Compute fractional blending factor, r, and lower left corner of texel 0
* reduced by putting everything into vec4s. uv_top holds the UV uv_bot.xy = gl_TexCoord[0].st-vec2(0.5,0.5); // move into the lower left blending texel
* coordinates for the top two texels (.xy=left, .zw=right) and uv_bot r = uv_bot.xy-floor(uv_bot.xy); // fractional part
* is for the lower two. uv_bot.xy = floor(uv_bot.xy); // integral part
*/
// Compute texel coordinates
// Compute fractional blending factor, r, and lower left corner of texel 0 uv_bot.xy += vec2(0.5,0.5); // offset to center of pixel (should not be needed but it fixes a lot of glitches, esp. on Nvidia)
uv_bot.xy = gl_TexCoord[0].st-vec2(0.5,0.5); // move into the lower left blending texel uv_bot.zw = uv_bot.xy + vec2(1.0,0.0); // compute coordinates of the other three neighbors
r = uv_bot.xy-floor(uv_bot.xy); // fractional part uv_top = uv_bot + vec4(0.0,1.0,0.0,1.0);
uv_bot.xy = floor(uv_bot.xy); // integral part
// Compute the properly wrapped texel coordinates
// Compute texel coordinates uv_top = WrapTexelCoords(uv_top,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw));
uv_bot.xy += vec2(0.5,0.5); // offset to center of pixel (should not be needed but it fixes a lot of glitches, esp. on Nvidia) uv_bot = WrapTexelCoords(uv_bot,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw));
uv_bot.zw = uv_bot.xy + vec2(1.0,0.0); // compute coordinates of the other three neighbors
uv_top = uv_bot + vec4(0.0,1.0,0.0,1.0); // Fetch the texels
c[0]=texture2D(textureMap,uv_bot.xy); // bottom-left (base texel)
// Compute the properly wrapped texel coordinates c[1]=texture2D(textureMap,uv_bot.zw); // bottom-right
uv_top = WrapTexelCoords(uv_top,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw)); c[2]=texture2D(textureMap,uv_top.xy); // top-left
uv_bot = WrapTexelCoords(uv_bot,vec4(fsSubTexture.xy,fsSubTexture.xy),vec4(fsSubTexture.zw,fsSubTexture.zw), vec4(fsTexParams.zw,fsTexParams.zw)); c[3]=texture2D(textureMap,uv_top.zw); // top-right
// Fetch the texels // Interpolate texels and blend result with material color to determine final (unlit) fragment color
c[0]=texture2D(textureMap,uv_bot.xy); // bottom-left (base texel) // fragColor = (c[0]*(1.0-r.s)*(1.0-r.t) + c[1]*r.s*(1.0-r.t) + c[2]*(1.0-r.s)*r.t + c[3]*r.s*r.t);
c[1]=texture2D(textureMap,uv_bot.zw); // bottom-right // Faster method:
c[2]=texture2D(textureMap,uv_top.xy); // top-left c[0] += (c[1]-c[0])*r.s; // 2 alu
c[3]=texture2D(textureMap,uv_top.zw); // top-right c[2] += (c[3]-c[2])*r.s; // 2 alu
fragColor = c[0]+(c[2]-c[0])*r.t; //2 alu
// Interpolate texels and blend result with material color to determine final (unlit) fragment color
// fragColor = (c[0]*(1.0-r.s)*(1.0-r.t) + c[1]*r.s*(1.0-r.t) + c[2]*(1.0-r.s)*r.t + c[3]*r.s*r.t); /*
// Faster method: * T1RGB5:
c[0] += (c[1]-c[0])*r.s; // 2 alu *
c[2] += (c[3]-c[2])*r.s; // 2 alu * The transparency bit determines whether to discard pixels (if set).
fragColor = c[0]+(c[2]-c[0])*r.t; //2 alu * What is unknown is how this bit behaves when interpolated. OpenGL
* processes it as an alpha value, so it might concievably be blended
/* * with neighbors. Here, an arbitrary threshold is chosen.
* T1RGB5: *
* * To-do: blending could probably enabled and this would work even
* The transparency bit determines whether to discard pixels (if set). * better with a hard threshold.
* What is unknown is how this bit behaves when interpolated. OpenGL *
* processes it as an alpha value, so it might concievably be blended * Countour processing also seems to be enabled for RGBA4 textures.
* with neighbors. Here, an arbitrary threshold is chosen. * When the alpha value is 0.0 (or close), pixels are discarded
* * entirely.
* To-do: blending could probably enabled and this would work even */
* better with a hard threshold. if (fsTexParams.y > 0.5) // contour processing enabled
* {
* Countour processing also seems to be enabled for RGBA4 textures. if (fragColor.a < 0.01) // discard anything with alpha == 0
* When the alpha value is 0.0 (or close), pixels are discarded discard;
* entirely. }
*/
if (fsTexParams.y > 0.5) // contour processing enabled // If contour texture and not discarded, force alpha to 1.0 because will later be modified by polygon translucency
{ if (fsTexFormat < 0.5) // contour (T1RGB5) texture
if (fragColor.a < 0.01) // discard anything with alpha == 0 fragColor.a = 1.0;
discard; }
}
// Compute spotlight and apply lighting
// If contour texture and not discarded, force alpha to 1.0 because will later be modified by polygon translucency /*
if (fsTexFormat < 0.5) // contour (T1RGB5) texture map ellipse = (gl_FragCoord.xy-spotEllipse.xy)/spotEllipse.zw;
fragColor.a = 1.0; insideSpot = dot(ellipse,ellipse);
} if ((insideSpot <= 1.0) && (fsViewZ>=spotRange.x) && (fsViewZ<spotRange.y))
lightIntensity = fsLightIntensity+(1.0-insideSpot)*spotColor;
// Compute spotlight and apply lighting else
/*** lightIntensity = fsLightIntensity;
ellipse = (gl_FragCoord.xy-spotEllipse.xy)/spotEllipse.zw; */
insideSpot = dot(ellipse,ellipse); fragColor.rgb *= fsLightIntensity;
if ((insideSpot <= 1.0) && (fsViewZ>=spotRange.x) && (fsViewZ<spotRange.y)) fragColor.rgb += vec3(fsSpecularTerm,fsSpecularTerm,fsSpecularTerm);
lightIntensity = fsLightIntensity+(1.0-insideSpot)*spotColor;
else // Translucency (modulates existing alpha channel for RGBA4 texels)
lightIntensity = fsLightIntensity; fragColor.a *= fsTransLevel;
fragColor.rgb *= lightIntensity;
***/ // Apply fog
fragColor.rgb *= fsLightIntensity; fragColor.rgb = mix(fragColor.rgb, gl_Fog.color.rgb, fsFogFactor);
// Translucency (modulates existing alpha channel for RGBA4 texels) // Store final color
fragColor.a *= fsTransLevel; gl_FragColor = fragColor;
}
// Apply fog under the control of fog factor setting from polygon header
fragColor.rgb = mix(gl_Fog.color.rgb, fragColor.rgb, fsFogFactor );
// Store final color
gl_FragColor = fragColor;
}