Duckstation/src/core/gpu_hw.cpp

535 lines
19 KiB
C++
Raw Normal View History

2019-09-12 02:53:04 +00:00
#include "gpu_hw.h"
2020-01-10 03:31:12 +00:00
#include "common/assert.h"
#include "common/log.h"
#include "common/state_wrapper.h"
2019-11-01 14:31:25 +00:00
#include "settings.h"
#include "system.h"
#include <imgui.h>
2019-09-12 02:53:04 +00:00
#include <sstream>
Log_SetChannel(GPU_HW);
2019-09-12 02:53:04 +00:00
GPU_HW::GPU_HW() : GPU()
{
m_vram_ptr = m_vram_shadow.data();
}
2019-09-12 02:53:04 +00:00
GPU_HW::~GPU_HW() = default;
bool GPU_HW::IsHardwareRenderer() const
{
return true;
}
bool GPU_HW::Initialize(HostDisplay* host_display, System* system, DMA* dma, InterruptController* interrupt_controller,
Timers* timers)
{
if (!GPU::Initialize(host_display, system, dma, interrupt_controller, timers))
return false;
const Settings& settings = m_system->GetSettings();
m_resolution_scale = settings.gpu_resolution_scale;
m_true_color = settings.gpu_true_color;
m_scaled_dithering = settings.gpu_scaled_dithering;
m_texture_filtering = settings.gpu_texture_filtering;
if (m_resolution_scale < 1 || m_resolution_scale > m_max_resolution_scale)
{
m_system->GetHostInterface()->AddFormattedOSDMessage(5.0f, "Invalid resolution scale %ux specified. Maximum is %u.",
m_resolution_scale, m_max_resolution_scale);
m_resolution_scale = std::clamp<u32>(m_resolution_scale, 1u, m_max_resolution_scale);
}
2020-03-07 02:54:15 +00:00
PrintSettingsToLog();
return true;
}
2019-10-04 10:33:37 +00:00
void GPU_HW::Reset()
{
GPU::Reset();
m_vram_shadow.fill(0);
2019-10-04 10:33:37 +00:00
m_batch = {};
m_batch_ubo_data = {};
m_batch_ubo_dirty = true;
SetFullVRAMDirtyRectangle();
2019-10-04 10:33:37 +00:00
}
bool GPU_HW::DoState(StateWrapper& sw)
{
if (!GPU::DoState(sw))
return false;
// invalidate the whole VRAM read texture when loading state
if (sw.IsReading())
SetFullVRAMDirtyRectangle();
return true;
}
2019-11-01 14:31:25 +00:00
void GPU_HW::UpdateSettings()
{
GPU::UpdateSettings();
const Settings& settings = m_system->GetSettings();
m_resolution_scale = std::clamp<u32>(settings.gpu_resolution_scale, 1, m_max_resolution_scale);
m_true_color = settings.gpu_true_color;
m_scaled_dithering = settings.gpu_scaled_dithering;
m_texture_filtering = settings.gpu_texture_filtering;
2020-03-07 02:54:15 +00:00
PrintSettingsToLog();
}
void GPU_HW::PrintSettingsToLog()
{
Log_InfoPrintf("Resolution Scale: %u (%ux%u), maximum %u", m_resolution_scale, VRAM_WIDTH * m_resolution_scale,
VRAM_HEIGHT * m_resolution_scale, m_max_resolution_scale);
Log_InfoPrintf("Dithering: %s%s", m_true_color ? "Disabled" : "Enabled",
(!m_true_color && m_scaled_dithering) ? " (Scaled)" : "");
Log_InfoPrintf("Texture Filtering: %s", m_texture_filtering ? "Enabled" : "Disabled");
Log_InfoPrintf("Dual-source blending: %s", m_supports_dual_source_blend ? "Supported" : "Not supported");
2019-11-01 14:31:25 +00:00
}
2019-10-13 07:33:20 +00:00
void GPU_HW::LoadVertices(RenderCommand rc, u32 num_vertices, const u32* command_ptr)
2019-09-12 02:53:04 +00:00
{
2019-12-11 06:35:14 +00:00
const u32 texpage = ZeroExtend32(m_draw_mode.mode_reg.bits) | (ZeroExtend32(m_draw_mode.palette_reg) << 16);
s32 min_x = std::numeric_limits<s32>::max();
s32 max_x = std::numeric_limits<s32>::min();
s32 min_y = std::numeric_limits<s32>::max();
s32 max_y = std::numeric_limits<s32>::min();
// TODO: Move this to the GPU..
2019-09-12 02:53:04 +00:00
switch (rc.primitive)
{
case Primitive::Polygon:
{
DebugAssert(num_vertices == 3 || num_vertices == 4);
EnsureVertexBufferSpace(rc.quad_polygon ? 6 : 3);
2019-09-12 02:53:04 +00:00
const u32 first_color = rc.color_for_first_vertex;
const bool shaded = rc.shading_enable;
const bool textured = rc.texture_enable;
2019-09-12 02:53:04 +00:00
u32 buffer_pos = 1;
std::array<BatchVertex, 4> vertices;
for (u32 i = 0; i < 3; i++)
2019-09-12 02:53:04 +00:00
{
const u32 color = (shaded && i > 0) ? (command_ptr[buffer_pos++] & UINT32_C(0x00FFFFFF)) : first_color;
2019-10-13 07:33:20 +00:00
const VertexPosition vp{command_ptr[buffer_pos++]};
const u16 packed_texcoord = textured ? Truncate16(command_ptr[buffer_pos++]) : 0;
vertices[i].Set(vp.x, vp.y, color, texpage, packed_texcoord);
}
2019-09-12 02:53:04 +00:00
// Cull polygons which are too large.
if (std::abs(vertices[2].x - vertices[0].x) >= MAX_PRIMITIVE_WIDTH ||
std::abs(vertices[2].x - vertices[1].x) >= MAX_PRIMITIVE_WIDTH ||
std::abs(vertices[1].x - vertices[0].x) >= MAX_PRIMITIVE_WIDTH ||
std::abs(vertices[2].y - vertices[0].y) >= MAX_PRIMITIVE_HEIGHT ||
std::abs(vertices[2].y - vertices[1].y) >= MAX_PRIMITIVE_HEIGHT ||
std::abs(vertices[1].y - vertices[0].y) >= MAX_PRIMITIVE_HEIGHT)
{
Log_DebugPrintf("Culling too-large polygon: %d,%d %d,%d %d,%d", vertices[0].x, vertices[0].y, vertices[1].x,
vertices[1].y, vertices[2].x, vertices[2].y);
}
else
{
min_x = std::min(std::min(vertices[0].x, vertices[1].x), vertices[2].x);
max_x = std::max(std::max(vertices[0].x, vertices[1].x), vertices[2].x);
min_y = std::min(std::min(vertices[0].y, vertices[1].y), vertices[2].y);
max_y = std::max(std::max(vertices[0].y, vertices[1].y), vertices[2].y);
std::memcpy(m_batch_current_vertex_ptr, vertices.data(), sizeof(BatchVertex) * 3);
m_batch_current_vertex_ptr += 3;
2019-09-12 02:53:04 +00:00
}
// quads
for (u32 i = 3; i < num_vertices; i++)
2020-01-08 22:46:52 +00:00
{
const u32 color = (shaded && i > 0) ? (command_ptr[buffer_pos++] & UINT32_C(0x00FFFFFF)) : first_color;
const VertexPosition vp{command_ptr[buffer_pos++]};
const u16 packed_texcoord = textured ? Truncate16(command_ptr[buffer_pos++]) : 0;
vertices[3].Set(vp.x, vp.y, color, texpage, packed_texcoord);
// Cull polygons which are too large.
if (std::abs(vertices[3].x - vertices[2].x) >= MAX_PRIMITIVE_WIDTH ||
std::abs(vertices[3].x - vertices[1].x) >= MAX_PRIMITIVE_WIDTH ||
std::abs(vertices[1].x - vertices[2].x) >= MAX_PRIMITIVE_WIDTH ||
std::abs(vertices[3].y - vertices[2].y) >= MAX_PRIMITIVE_HEIGHT ||
std::abs(vertices[3].y - vertices[1].y) >= MAX_PRIMITIVE_HEIGHT ||
std::abs(vertices[1].y - vertices[2].y) >= MAX_PRIMITIVE_HEIGHT)
{
Log_DebugPrintf("Culling too-large polygon (quad second half): %d,%d %d,%d %d,%d", vertices[2].x,
vertices[2].y, vertices[1].x, vertices[1].y, vertices[0].x, vertices[0].y);
}
else
{
min_x = std::min(min_x, vertices[3].x);
max_x = std::max(max_x, vertices[3].x);
min_y = std::min(min_y, vertices[3].y);
max_y = std::max(max_y, vertices[3].y);
AddVertex(vertices[2]);
AddVertex(vertices[1]);
AddVertex(vertices[3]);
}
2020-01-08 22:46:52 +00:00
}
2019-09-12 02:53:04 +00:00
}
break;
case Primitive::Rectangle:
{
u32 buffer_pos = 1;
const u32 color = rc.color_for_first_vertex;
2019-10-13 07:33:20 +00:00
const VertexPosition vp{command_ptr[buffer_pos++]};
const s32 pos_x = vp.x;
const s32 pos_y = vp.y;
const auto [texcoord_x, texcoord_y] =
UnpackTexcoord(rc.texture_enable ? Truncate16(command_ptr[buffer_pos++]) : 0);
u16 orig_tex_left = ZeroExtend16(texcoord_x);
u16 orig_tex_top = ZeroExtend16(texcoord_y);
s32 rectangle_width;
s32 rectangle_height;
switch (rc.rectangle_size)
{
case DrawRectangleSize::R1x1:
rectangle_width = 1;
rectangle_height = 1;
break;
case DrawRectangleSize::R8x8:
rectangle_width = 8;
rectangle_height = 8;
break;
case DrawRectangleSize::R16x16:
rectangle_width = 16;
rectangle_height = 16;
break;
default:
rectangle_width = static_cast<s32>(command_ptr[buffer_pos] & 0xFFFF);
rectangle_height = static_cast<s32>(command_ptr[buffer_pos] >> 16);
break;
}
if (rectangle_width >= MAX_PRIMITIVE_WIDTH || rectangle_height >= MAX_PRIMITIVE_HEIGHT)
{
Log_DebugPrintf("Culling too-large rectangle: %d,%d %dx%d", pos_x, pos_y, rectangle_width, rectangle_height);
return;
}
// we can split the rectangle up into potentially 8 quads
const u32 required_vertices = 6 * ((rectangle_width + (TEXTURE_PAGE_WIDTH - 1)) / TEXTURE_PAGE_WIDTH) *
((rectangle_height + (TEXTURE_PAGE_HEIGHT - 1)) / TEXTURE_PAGE_HEIGHT);
EnsureVertexBufferSpace(required_vertices);
min_x = pos_x;
min_y = pos_y;
max_x = pos_x + rectangle_width;
max_y = pos_y + rectangle_height;
// Split the rectangle into multiple quads if it's greater than 256x256, as the texture page should repeat.
u16 tex_top = orig_tex_top;
for (s32 y_offset = 0; y_offset < rectangle_height;)
{
const s32 quad_height = std::min<s32>(rectangle_height - y_offset, TEXTURE_PAGE_WIDTH - tex_top);
const s32 quad_start_y = pos_y + y_offset;
const s32 quad_end_y = quad_start_y + quad_height;
const u16 tex_bottom = tex_top + static_cast<u16>(quad_height);
u16 tex_left = orig_tex_left;
for (s32 x_offset = 0; x_offset < rectangle_width;)
{
const s32 quad_width = std::min<s32>(rectangle_width - x_offset, TEXTURE_PAGE_HEIGHT - tex_left);
const s32 quad_start_x = pos_x + x_offset;
const s32 quad_end_x = quad_start_x + quad_width;
const u16 tex_right = tex_left + static_cast<u16>(quad_width);
AddNewVertex(quad_start_x, quad_start_y, color, texpage, tex_left, tex_top);
AddNewVertex(quad_end_x, quad_start_y, color, texpage, tex_right, tex_top);
AddNewVertex(quad_start_x, quad_end_y, color, texpage, tex_left, tex_bottom);
AddNewVertex(quad_start_x, quad_end_y, color, texpage, tex_left, tex_bottom);
AddNewVertex(quad_end_x, quad_start_y, color, texpage, tex_right, tex_top);
AddNewVertex(quad_end_x, quad_end_y, color, texpage, tex_right, tex_bottom);
x_offset += quad_width;
tex_left = 0;
}
y_offset += quad_height;
tex_top = 0;
}
}
break;
2019-09-27 12:45:57 +00:00
case Primitive::Line:
{
EnsureVertexBufferSpace(num_vertices * 2);
2019-09-27 12:45:57 +00:00
const u32 first_color = rc.color_for_first_vertex;
const bool shaded = rc.shading_enable;
u32 buffer_pos = 1;
BatchVertex last_vertex;
2019-09-27 12:45:57 +00:00
for (u32 i = 0; i < num_vertices; i++)
{
2019-10-13 07:33:20 +00:00
const u32 color = (shaded && i > 0) ? (command_ptr[buffer_pos++] & UINT32_C(0x00FFFFFF)) : first_color;
const VertexPosition vp{command_ptr[buffer_pos++]};
BatchVertex vertex;
vertex.Set(vp.x, vp.y, color, 0, 0);
if (i > 0)
{
if (std::abs(last_vertex.x - vertex.x) >= MAX_PRIMITIVE_WIDTH ||
std::abs(last_vertex.y - vertex.y) >= MAX_PRIMITIVE_HEIGHT)
{
Log_DebugPrintf("Culling too-large line: %d,%d - %d,%d", last_vertex.x, last_vertex.y, vertex.x, vertex.y);
}
else
{
AddVertex(last_vertex);
AddVertex(vertex);
min_x = std::min(min_x, std::min(last_vertex.x, vertex.x));
max_x = std::max(max_x, std::max(last_vertex.x, vertex.x));
min_y = std::min(min_y, std::min(last_vertex.y, vertex.y));
max_y = std::max(max_y, std::max(last_vertex.y, vertex.y));
}
}
std::memcpy(&last_vertex, &vertex, sizeof(BatchVertex));
2019-09-27 12:45:57 +00:00
}
}
break;
2019-09-12 02:53:04 +00:00
default:
UnreachableCode();
break;
}
if (min_x <= max_x)
{
const Common::Rectangle<u32> area_covered(
std::clamp(m_drawing_offset.x + min_x, static_cast<s32>(m_drawing_area.left),
static_cast<s32>(m_drawing_area.right)),
std::clamp(m_drawing_offset.y + min_y, static_cast<s32>(m_drawing_area.top),
static_cast<s32>(m_drawing_area.bottom)),
std::clamp(m_drawing_offset.x + max_x, static_cast<s32>(m_drawing_area.left),
static_cast<s32>(m_drawing_area.right)) +
1,
std::clamp(m_drawing_offset.y + max_y, static_cast<s32>(m_drawing_area.top),
static_cast<s32>(m_drawing_area.bottom)) +
1);
m_vram_dirty_rect.Include(area_covered);
}
}
2019-09-12 14:18:13 +00:00
void GPU_HW::CalcScissorRect(int* left, int* top, int* right, int* bottom)
{
*left = m_drawing_area.left * m_resolution_scale;
*right = std::max<u32>((m_drawing_area.right + 1) * m_resolution_scale, *left + 1);
*top = m_drawing_area.top * m_resolution_scale;
*bottom = std::max<u32>((m_drawing_area.bottom + 1) * m_resolution_scale, *top + 1);
2019-09-12 14:18:13 +00:00
}
Common::Rectangle<u32> GPU_HW::GetVRAMTransferBounds(u32 x, u32 y, u32 width, u32 height)
{
Common::Rectangle<u32> out_rc = Common::Rectangle<u32>::FromExtents(x, y, width, height);
if (out_rc.right > VRAM_WIDTH)
{
out_rc.left = 0;
out_rc.right = VRAM_WIDTH;
}
if (out_rc.bottom > VRAM_HEIGHT)
{
out_rc.top = 0;
out_rc.bottom = VRAM_HEIGHT;
}
return out_rc;
}
GPU_HW::BatchPrimitive GPU_HW::GetPrimitiveForCommand(RenderCommand rc)
{
if (rc.primitive == Primitive::Line)
return BatchPrimitive::Lines;
else
return BatchPrimitive::Triangles;
}
void GPU_HW::IncludeVRAMDityRectangle(const Common::Rectangle<u32>& rect)
{
m_vram_dirty_rect.Include(rect);
// the vram area can include the texture page, but the game can leave it as-is. in this case, set it as dirty so the
// shadow texture is updated
if (!m_draw_mode.IsTexturePageChanged() &&
(m_draw_mode.GetTexturePageRectangle().Intersects(rect) ||
(m_draw_mode.IsUsingPalette() && m_draw_mode.GetTexturePaletteRectangle().Intersects(rect))))
{
m_draw_mode.SetTexturePageChanged();
}
}
void GPU_HW::EnsureVertexBufferSpace(u32 required_vertices)
{
if (m_batch_current_vertex_ptr)
{
if (GetBatchVertexSpace() >= required_vertices)
return;
FlushRender();
}
MapBatchVertexPointer(required_vertices);
}
void GPU_HW::FillVRAM(u32 x, u32 y, u32 width, u32 height, u32 color)
{
IncludeVRAMDityRectangle(
Common::Rectangle<u32>::FromExtents(x, y, width, height).Clamped(0, 0, VRAM_WIDTH, VRAM_HEIGHT));
}
void GPU_HW::UpdateVRAM(u32 x, u32 y, u32 width, u32 height, const void* data)
{
DebugAssert((x + width) <= VRAM_WIDTH && (y + height) <= VRAM_HEIGHT);
IncludeVRAMDityRectangle(Common::Rectangle<u32>::FromExtents(x, y, width, height));
}
void GPU_HW::CopyVRAM(u32 src_x, u32 src_y, u32 dst_x, u32 dst_y, u32 width, u32 height)
{
IncludeVRAMDityRectangle(
Common::Rectangle<u32>::FromExtents(dst_x, dst_y, width, height).Clamped(0, 0, VRAM_WIDTH, VRAM_HEIGHT));
}
2019-10-13 07:33:20 +00:00
void GPU_HW::DispatchRenderCommand(RenderCommand rc, u32 num_vertices, const u32* command_ptr)
{
2019-11-01 11:47:45 +00:00
TextureMode texture_mode;
if (rc.IsTexturingEnabled())
{
// texture page changed - check that the new page doesn't intersect the drawing area
2019-12-11 06:35:14 +00:00
if (m_draw_mode.IsTexturePageChanged())
{
2019-12-11 06:35:14 +00:00
m_draw_mode.ClearTexturePageChangedFlag();
if (m_vram_dirty_rect.Valid() &&
(m_draw_mode.GetTexturePageRectangle().Intersects(m_vram_dirty_rect) ||
(m_draw_mode.IsUsingPalette() && m_draw_mode.GetTexturePaletteRectangle().Intersects(m_vram_dirty_rect))))
{
Log_DevPrintf("Invalidating VRAM read cache due to drawing area overlap");
if (!IsFlushed())
FlushRender();
UpdateVRAMReadTexture();
m_renderer_stats.num_vram_read_texture_updates++;
ClearVRAMDirtyRectangle();
}
}
2019-12-11 06:35:14 +00:00
texture_mode = m_draw_mode.GetTextureMode();
2019-11-01 11:47:45 +00:00
if (rc.raw_texture_enable)
{
texture_mode =
static_cast<TextureMode>(static_cast<u8>(texture_mode) | static_cast<u8>(TextureMode::RawTextureBit));
}
}
else
{
2019-11-01 11:47:45 +00:00
texture_mode = TextureMode::Disabled;
}
// has any state changed which requires a new batch?
2019-11-01 11:47:45 +00:00
const TransparencyMode transparency_mode =
2019-12-11 06:35:14 +00:00
rc.transparency_enable ? m_draw_mode.GetTransparencyMode() : TransparencyMode::Disabled;
const BatchPrimitive rc_primitive = GetPrimitiveForCommand(rc);
2019-11-01 14:31:25 +00:00
const bool dithering_enable = (!m_true_color && rc.IsDitheringEnabled()) ? m_GPUSTAT.dither_enable : false;
2019-11-01 11:47:45 +00:00
if (!IsFlushed())
{
if (m_batch.texture_mode != texture_mode || m_batch.transparency_mode != transparency_mode ||
m_batch.primitive != rc_primitive || dithering_enable != m_batch.dithering || m_drawing_area_changed ||
m_drawing_offset_changed || m_draw_mode.IsTextureWindowChanged())
2019-11-01 11:47:45 +00:00
{
FlushRender();
}
}
// transparency mode change
if (m_batch.transparency_mode != transparency_mode && transparency_mode != TransparencyMode::Disabled)
{
static constexpr float transparent_alpha[4][2] = {{0.5f, 0.5f}, {1.0f, 1.0f}, {1.0f, 1.0f}, {0.25f, 1.0f}};
m_batch_ubo_data.u_src_alpha_factor = transparent_alpha[static_cast<u32>(transparency_mode)][0];
m_batch_ubo_data.u_dst_alpha_factor = transparent_alpha[static_cast<u32>(transparency_mode)][1];
m_batch_ubo_dirty = true;
}
2019-11-24 13:30:35 +00:00
if (m_batch.check_mask_before_draw != m_GPUSTAT.check_mask_before_draw ||
m_batch.set_mask_while_drawing != m_GPUSTAT.set_mask_while_drawing)
{
m_batch.check_mask_before_draw = m_GPUSTAT.check_mask_before_draw;
m_batch.set_mask_while_drawing = m_GPUSTAT.set_mask_while_drawing;
m_batch_ubo_data.u_set_mask_while_drawing = BoolToUInt32(m_GPUSTAT.set_mask_while_drawing);
m_batch_ubo_dirty = true;
}
if (m_drawing_offset_changed)
{
m_drawing_offset_changed = false;
m_batch_ubo_data.u_pos_offset[0] = m_drawing_offset.x;
m_batch_ubo_data.u_pos_offset[1] = m_drawing_offset.y;
m_batch_ubo_dirty = true;
}
2019-11-01 11:47:45 +00:00
// update state
m_batch.primitive = rc_primitive;
m_batch.texture_mode = texture_mode;
m_batch.transparency_mode = transparency_mode;
m_batch.dithering = dithering_enable;
2019-11-01 11:47:45 +00:00
2019-12-11 06:35:14 +00:00
if (m_draw_mode.IsTextureWindowChanged())
2019-10-05 13:25:06 +00:00
{
2019-12-11 06:35:14 +00:00
m_draw_mode.ClearTextureWindowChangedFlag();
2019-12-11 06:35:14 +00:00
m_batch_ubo_data.u_texture_window_mask[0] = ZeroExtend32(m_draw_mode.texture_window_mask_x);
m_batch_ubo_data.u_texture_window_mask[1] = ZeroExtend32(m_draw_mode.texture_window_mask_y);
m_batch_ubo_data.u_texture_window_offset[0] = ZeroExtend32(m_draw_mode.texture_window_offset_x);
m_batch_ubo_data.u_texture_window_offset[1] = ZeroExtend32(m_draw_mode.texture_window_offset_y);
m_batch_ubo_dirty = true;
2019-10-05 13:25:06 +00:00
}
2019-10-13 07:33:20 +00:00
LoadVertices(rc, num_vertices, command_ptr);
}
void GPU_HW::DrawRendererStats(bool is_idle_frame)
{
if (!is_idle_frame)
{
m_last_renderer_stats = m_renderer_stats;
m_renderer_stats = {};
}
if (ImGui::CollapsingHeader("Renderer Statistics", ImGuiTreeNodeFlags_DefaultOpen))
{
const auto& stats = m_last_renderer_stats;
ImGui::Columns(2);
ImGui::SetColumnWidth(0, 200.0f * ImGui::GetIO().DisplayFramebufferScale.x);
ImGui::TextUnformatted("Batches Drawn:");
ImGui::NextColumn();
ImGui::Text("%u", stats.num_batches);
ImGui::NextColumn();
ImGui::TextUnformatted("VRAM Read Texture Updates:");
ImGui::NextColumn();
ImGui::Text("%u", stats.num_vram_read_texture_updates);
ImGui::NextColumn();
ImGui::TextUnformatted("Uniform Buffer Updates: ");
ImGui::NextColumn();
ImGui::Text("%u", stats.num_uniform_buffer_updates);
ImGui::NextColumn();
ImGui::Columns(1);
}
}