Duckstation/src/core/mdec.cpp
Stenzek f5ddd7ba32
DMA: Template transfer functions
~20% speedup in FMV playback on a Ryzen 9 7950X3D. CPUs hate branches.
2023-12-19 22:38:36 +10:00

945 lines
26 KiB
C++

// SPDX-FileCopyrightText: 2019-2022 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: (GPL-3.0 OR CC-BY-NC-ND-4.0)
#include "mdec.h"
#include "cpu_core.h"
#include "dma.h"
#include "host.h"
#include "interrupt_controller.h"
#include "system.h"
#include "util/imgui_manager.h"
#include "util/state_wrapper.h"
#include "common/bitfield.h"
#include "common/fifo_queue.h"
#include "common/log.h"
#include "imgui.h"
#include <array>
#include <memory>
Log_SetChannel(MDEC);
namespace MDEC {
namespace {
static constexpr u32 DATA_IN_FIFO_SIZE = 1024;
static constexpr u32 DATA_OUT_FIFO_SIZE = 768;
static constexpr u32 NUM_BLOCKS = 6;
static constexpr TickCount TICKS_PER_BLOCK = 448;
enum DataOutputDepth : u8
{
DataOutputDepth_4Bit = 0,
DataOutputDepth_8Bit = 1,
DataOutputDepth_24Bit = 2,
DataOutputDepth_15Bit = 3
};
enum class Command : u8
{
None = 0,
DecodeMacroblock = 1,
SetIqTab = 2,
SetScale = 3
};
enum class State : u8
{
Idle,
DecodingMacroblock,
WritingMacroblock,
SetIqTable,
SetScaleTable,
NoCommand
};
union StatusRegister
{
u32 bits;
BitField<u32, bool, 31, 1> data_out_fifo_empty;
BitField<u32, bool, 30, 1> data_in_fifo_full;
BitField<u32, bool, 29, 1> command_busy;
BitField<u32, bool, 28, 1> data_in_request;
BitField<u32, bool, 27, 1> data_out_request;
BitField<u32, DataOutputDepth, 25, 2> data_output_depth;
BitField<u32, bool, 24, 1> data_output_signed;
BitField<u32, u8, 23, 1> data_output_bit15;
BitField<u32, u8, 16, 3> current_block;
BitField<u32, u16, 0, 16> parameter_words_remaining;
};
union ControlRegister
{
u32 bits;
BitField<u32, bool, 31, 1> reset;
BitField<u32, bool, 30, 1> enable_dma_in;
BitField<u32, bool, 29, 1> enable_dma_out;
};
union CommandWord
{
u32 bits;
BitField<u32, Command, 29, 3> command;
BitField<u32, DataOutputDepth, 27, 2> data_output_depth;
BitField<u32, bool, 26, 1> data_output_signed;
BitField<u32, u8, 25, 1> data_output_bit15;
BitField<u32, u16, 0, 16> parameter_word_count;
};
} // namespace
static bool HasPendingBlockCopyOut();
static void SoftReset();
static void ResetDecoder();
static void UpdateStatus();
static u32 ReadDataRegister();
static void WriteCommandRegister(u32 value);
static void Execute();
static bool HandleDecodeMacroblockCommand();
static void HandleSetQuantTableCommand();
static void HandleSetScaleCommand();
static bool DecodeMonoMacroblock();
static bool DecodeColoredMacroblock();
static void ScheduleBlockCopyOut(TickCount ticks);
static void CopyOutBlock(void* param, TickCount ticks, TickCount ticks_late);
// from nocash spec
static bool rl_decode_block(s16* blk, const u8* qt);
static void IDCT(s16* blk);
static void IDCT_New(s16* blk);
static void IDCT_Old(s16* blk);
static void yuv_to_rgb(u32 xx, u32 yy, const std::array<s16, 64>& Crblk, const std::array<s16, 64>& Cbblk,
const std::array<s16, 64>& Yblk);
static void y_to_mono(const std::array<s16, 64>& Yblk);
static StatusRegister s_status = {};
static bool s_enable_dma_in = false;
static bool s_enable_dma_out = false;
// Even though the DMA is in words, we access the FIFO as halfwords.
static InlineFIFOQueue<u16, DATA_IN_FIFO_SIZE / sizeof(u16)> s_data_in_fifo;
static InlineFIFOQueue<u32, DATA_OUT_FIFO_SIZE / sizeof(u32)> s_data_out_fifo;
static State s_state = State::Idle;
static u32 s_remaining_halfwords = 0;
static std::array<u8, 64> s_iq_uv{};
static std::array<u8, 64> s_iq_y{};
static std::array<s16, 64> s_scale_table{};
// blocks, for colour: 0 - Crblk, 1 - Cbblk, 2-5 - Y 1-4
static std::array<std::array<s16, 64>, NUM_BLOCKS> s_blocks;
static u32 s_current_block = 0; // block (0-5)
static u32 s_current_coefficient = 64; // k (in block)
static u16 s_current_q_scale = 0;
alignas(16) static std::array<u32, 256> s_block_rgb{};
static std::unique_ptr<TimingEvent> s_block_copy_out_event;
static u32 s_total_blocks_decoded = 0;
} // namespace MDEC
void MDEC::Initialize()
{
s_block_copy_out_event =
TimingEvents::CreateTimingEvent("MDEC Block Copy Out", 1, 1, &MDEC::CopyOutBlock, nullptr, false);
s_total_blocks_decoded = 0;
Reset();
}
void MDEC::Shutdown()
{
s_block_copy_out_event.reset();
}
void MDEC::Reset()
{
s_block_copy_out_event->Deactivate();
SoftReset();
}
bool MDEC::DoState(StateWrapper& sw)
{
sw.Do(&s_status.bits);
sw.Do(&s_enable_dma_in);
sw.Do(&s_enable_dma_out);
sw.Do(&s_data_in_fifo);
sw.Do(&s_data_out_fifo);
sw.Do(&s_state);
sw.Do(&s_remaining_halfwords);
sw.Do(&s_iq_uv);
sw.Do(&s_iq_y);
sw.Do(&s_scale_table);
sw.Do(&s_blocks);
sw.Do(&s_current_block);
sw.Do(&s_current_coefficient);
sw.Do(&s_current_q_scale);
sw.Do(&s_block_rgb);
bool block_copy_out_pending = HasPendingBlockCopyOut();
sw.Do(&block_copy_out_pending);
if (sw.IsReading())
s_block_copy_out_event->SetState(block_copy_out_pending);
return !sw.HasError();
}
u32 MDEC::ReadRegister(u32 offset)
{
switch (offset)
{
case 0:
return ReadDataRegister();
case 4:
{
Log_TracePrintf("MDEC status register -> 0x%08X", s_status.bits);
return s_status.bits;
}
default:
{
Log_ErrorPrintf("Unknown MDEC register read: 0x%08X", offset);
return UINT32_C(0xFFFFFFFF);
}
}
}
void MDEC::WriteRegister(u32 offset, u32 value)
{
switch (offset)
{
case 0:
{
WriteCommandRegister(value);
return;
}
case 4:
{
Log_DebugPrintf("MDEC control register <- 0x%08X", value);
const ControlRegister cr{value};
if (cr.reset)
SoftReset();
s_enable_dma_in = cr.enable_dma_in;
s_enable_dma_out = cr.enable_dma_out;
Execute();
return;
}
default:
{
Log_ErrorPrintf("Unknown MDEC register write: 0x%08X <- 0x%08X", offset, value);
return;
}
}
}
void MDEC::DMARead(u32* words, u32 word_count)
{
if (s_data_out_fifo.GetSize() < word_count) [[unlikely]]
{
Log_WarningPrintf("Insufficient data in output FIFO (requested %u, have %u)", word_count,
s_data_out_fifo.GetSize());
}
const u32 words_to_read = std::min(word_count, s_data_out_fifo.GetSize());
if (words_to_read > 0)
{
s_data_out_fifo.PopRange(words, words_to_read);
words += words_to_read;
word_count -= words_to_read;
}
Log_DebugPrintf("DMA read complete, %u bytes left", static_cast<u32>(s_data_out_fifo.GetSize() * sizeof(u32)));
if (s_data_out_fifo.IsEmpty())
Execute();
}
void MDEC::DMAWrite(const u32* words, u32 word_count)
{
if (s_data_in_fifo.GetSpace() < (word_count * 2)) [[unlikely]]
{
Log_WarningPrintf("Input FIFO overflow (writing %u, space %u)", word_count * 2, s_data_in_fifo.GetSpace());
}
const u32 halfwords_to_write = std::min(word_count * 2, s_data_in_fifo.GetSpace() & ~u32(2));
s_data_in_fifo.PushRange(reinterpret_cast<const u16*>(words), halfwords_to_write);
Execute();
}
bool MDEC::HasPendingBlockCopyOut()
{
return s_block_copy_out_event->IsActive();
}
void MDEC::SoftReset()
{
s_status.bits = 0;
s_enable_dma_in = false;
s_enable_dma_out = false;
s_data_in_fifo.Clear();
s_data_out_fifo.Clear();
s_state = State::Idle;
s_remaining_halfwords = 0;
s_current_block = 0;
s_current_coefficient = 64;
s_current_q_scale = 0;
s_block_copy_out_event->Deactivate();
UpdateStatus();
}
void MDEC::ResetDecoder()
{
s_current_block = 0;
s_current_coefficient = 64;
s_current_q_scale = 0;
}
void MDEC::UpdateStatus()
{
s_status.data_out_fifo_empty = s_data_out_fifo.IsEmpty();
s_status.data_in_fifo_full = s_data_in_fifo.IsFull();
s_status.command_busy = (s_state != State::Idle);
s_status.parameter_words_remaining = Truncate16((s_remaining_halfwords / 2) - 1);
s_status.current_block = (s_current_block + 4) % NUM_BLOCKS;
// we always want data in if it's enabled
const bool data_in_request = s_enable_dma_in && s_data_in_fifo.GetSpace() >= (32 * 2);
s_status.data_in_request = data_in_request;
DMA::SetRequest(DMA::Channel::MDECin, data_in_request);
// we only want to send data out if we have some in the fifo
const bool data_out_request = s_enable_dma_out && !s_data_out_fifo.IsEmpty();
s_status.data_out_request = data_out_request;
DMA::SetRequest(DMA::Channel::MDECout, data_out_request);
}
u32 MDEC::ReadDataRegister()
{
if (s_data_out_fifo.IsEmpty())
{
// Stall the CPU until we're done processing.
if (HasPendingBlockCopyOut())
{
Log_DevPrint("MDEC data out FIFO empty on read - stalling CPU");
CPU::AddPendingTicks(s_block_copy_out_event->GetTicksUntilNextExecution());
}
else
{
Log_WarningPrintf("MDEC data out FIFO empty on read and no data processing");
return UINT32_C(0xFFFFFFFF);
}
}
const u32 value = s_data_out_fifo.Pop();
if (s_data_out_fifo.IsEmpty())
Execute();
else
UpdateStatus();
return value;
}
void MDEC::WriteCommandRegister(u32 value)
{
Log_TracePrintf("MDEC command/data register <- 0x%08X", value);
s_data_in_fifo.Push(Truncate16(value));
s_data_in_fifo.Push(Truncate16(value >> 16));
Execute();
}
void MDEC::Execute()
{
for (;;)
{
switch (s_state)
{
case State::Idle:
{
if (s_data_in_fifo.GetSize() < 2)
goto finished;
// first word
const CommandWord cw{ZeroExtend32(s_data_in_fifo.Peek(0)) | (ZeroExtend32(s_data_in_fifo.Peek(1)) << 16)};
s_status.data_output_depth = cw.data_output_depth;
s_status.data_output_signed = cw.data_output_signed;
s_status.data_output_bit15 = cw.data_output_bit15;
s_data_in_fifo.Remove(2);
s_data_out_fifo.Clear();
u32 num_words;
State new_state;
switch (cw.command)
{
case Command::DecodeMacroblock:
num_words = ZeroExtend32(cw.parameter_word_count.GetValue());
new_state = State::DecodingMacroblock;
break;
case Command::SetIqTab:
num_words = 16 + (((cw.bits & 1) != 0) ? 16 : 0);
new_state = State::SetIqTable;
break;
case Command::SetScale:
num_words = 32;
new_state = State::SetScaleTable;
break;
default:
Log_DevPrintf("Invalid MDEC command 0x%08X", cw.bits);
num_words = cw.parameter_word_count.GetValue();
new_state = State::NoCommand;
break;
}
Log_DebugPrintf("MDEC command: 0x%08X (%u, %u words in parameter, %u expected)", cw.bits,
ZeroExtend32(static_cast<u8>(cw.command.GetValue())),
ZeroExtend32(cw.parameter_word_count.GetValue()), num_words);
s_remaining_halfwords = num_words * 2;
s_state = new_state;
UpdateStatus();
continue;
}
case State::DecodingMacroblock:
{
if (HandleDecodeMacroblockCommand())
{
// we should be writing out now
DebugAssert(s_state == State::WritingMacroblock);
goto finished;
}
if (s_remaining_halfwords == 0 && s_current_block != NUM_BLOCKS)
{
// expecting data, but nothing more will be coming. bail out
ResetDecoder();
s_state = State::Idle;
continue;
}
goto finished;
}
case State::WritingMacroblock:
{
// this gets executed via the event, so if we get here, wait.
goto finished;
}
case State::SetIqTable:
{
if (s_data_in_fifo.GetSize() < s_remaining_halfwords)
goto finished;
HandleSetQuantTableCommand();
s_state = State::Idle;
UpdateStatus();
continue;
}
case State::SetScaleTable:
{
if (s_data_in_fifo.GetSize() < s_remaining_halfwords)
goto finished;
HandleSetScaleCommand();
s_state = State::Idle;
UpdateStatus();
continue;
}
case State::NoCommand:
{
// can potentially have a large amount of halfwords, so eat them as we go
const u32 words_to_consume = std::min(s_remaining_halfwords, s_data_in_fifo.GetSize());
s_data_in_fifo.Remove(words_to_consume);
s_remaining_halfwords -= words_to_consume;
if (s_remaining_halfwords == 0)
goto finished;
s_state = State::Idle;
UpdateStatus();
continue;
}
default:
UnreachableCode();
return;
}
}
finished:
// if we get here, it's because the FIFO is now empty
UpdateStatus();
}
bool MDEC::HandleDecodeMacroblockCommand()
{
if (s_status.data_output_depth <= DataOutputDepth_8Bit)
return DecodeMonoMacroblock();
else
return DecodeColoredMacroblock();
}
bool MDEC::DecodeMonoMacroblock()
{
// TODO: This should guard the output not the input
if (!s_data_out_fifo.IsEmpty())
return false;
if (!rl_decode_block(s_blocks[0].data(), s_iq_y.data()))
return false;
IDCT(s_blocks[0].data());
Log_DebugPrintf("Decoded mono macroblock, %u words remaining", s_remaining_halfwords / 2);
ResetDecoder();
s_state = State::WritingMacroblock;
y_to_mono(s_blocks[0]);
ScheduleBlockCopyOut(TICKS_PER_BLOCK * 6);
s_total_blocks_decoded++;
return true;
}
bool MDEC::DecodeColoredMacroblock()
{
for (; s_current_block < NUM_BLOCKS; s_current_block++)
{
if (!rl_decode_block(s_blocks[s_current_block].data(), (s_current_block >= 2) ? s_iq_y.data() : s_iq_uv.data()))
return false;
IDCT(s_blocks[s_current_block].data());
}
if (!s_data_out_fifo.IsEmpty())
return false;
// done decoding
Log_DebugPrintf("Decoded colored macroblock, %u words remaining", s_remaining_halfwords / 2);
ResetDecoder();
s_state = State::WritingMacroblock;
yuv_to_rgb(0, 0, s_blocks[0], s_blocks[1], s_blocks[2]);
yuv_to_rgb(8, 0, s_blocks[0], s_blocks[1], s_blocks[3]);
yuv_to_rgb(0, 8, s_blocks[0], s_blocks[1], s_blocks[4]);
yuv_to_rgb(8, 8, s_blocks[0], s_blocks[1], s_blocks[5]);
s_total_blocks_decoded += 4;
ScheduleBlockCopyOut(TICKS_PER_BLOCK * 6);
return true;
}
void MDEC::ScheduleBlockCopyOut(TickCount ticks)
{
DebugAssert(!HasPendingBlockCopyOut());
Log_DebugPrintf("Scheduling block copy out in %d ticks", ticks);
s_block_copy_out_event->SetIntervalAndSchedule(ticks);
}
void MDEC::CopyOutBlock(void* param, TickCount ticks, TickCount ticks_late)
{
Assert(s_state == State::WritingMacroblock);
s_block_copy_out_event->Deactivate();
switch (s_status.data_output_depth)
{
case DataOutputDepth_4Bit:
{
const u32* in_ptr = s_block_rgb.data();
for (u32 i = 0; i < (64 / 8); i++)
{
u32 value = *(in_ptr++) >> 4;
value |= (*(in_ptr++) >> 4) << 4;
value |= (*(in_ptr++) >> 4) << 8;
value |= (*(in_ptr++) >> 4) << 12;
value |= (*(in_ptr++) >> 4) << 16;
value |= (*(in_ptr++) >> 4) << 20;
value |= (*(in_ptr++) >> 4) << 24;
value |= (*(in_ptr++) >> 4) << 28;
s_data_out_fifo.Push(value);
}
}
break;
case DataOutputDepth_8Bit:
{
const u32* in_ptr = s_block_rgb.data();
for (u32 i = 0; i < (64 / 4); i++)
{
u32 value = *in_ptr++;
value |= *in_ptr++ << 8;
value |= *in_ptr++ << 16;
value |= *in_ptr++ << 24;
s_data_out_fifo.Push(value);
}
}
break;
case DataOutputDepth_24Bit:
{
// pack tightly
u32 index = 0;
u32 state = 0;
u32 rgb = 0;
while (index < s_block_rgb.size())
{
switch (state)
{
case 0:
rgb = s_block_rgb[index++]; // RGB-
state = 1;
break;
case 1:
rgb |= (s_block_rgb[index] & 0xFF) << 24; // RGBR
s_data_out_fifo.Push(rgb);
rgb = s_block_rgb[index] >> 8; // GB--
index++;
state = 2;
break;
case 2:
rgb |= s_block_rgb[index] << 16; // GBRG
s_data_out_fifo.Push(rgb);
rgb = s_block_rgb[index] >> 16; // B---
index++;
state = 3;
break;
case 3:
rgb |= s_block_rgb[index] << 8; // BRGB
s_data_out_fifo.Push(rgb);
index++;
state = 0;
break;
}
}
break;
}
case DataOutputDepth_15Bit:
{
if (g_settings.use_old_mdec_routines) [[unlikely]]
{
const u16 a = ZeroExtend16(s_status.data_output_bit15.GetValue()) << 15;
for (u32 i = 0; i < static_cast<u32>(s_block_rgb.size());)
{
u32 color = s_block_rgb[i++];
u16 r = Truncate16((color >> 3) & 0x1Fu);
u16 g = Truncate16((color >> 11) & 0x1Fu);
u16 b = Truncate16((color >> 19) & 0x1Fu);
const u16 color15a = r | (g << 5) | (b << 10) | (a << 15);
color = s_block_rgb[i++];
r = Truncate16((color >> 3) & 0x1Fu);
g = Truncate16((color >> 11) & 0x1Fu);
b = Truncate16((color >> 19) & 0x1Fu);
const u16 color15b = r | (g << 5) | (b << 10) | (a << 15);
s_data_out_fifo.Push(ZeroExtend32(color15a) | (ZeroExtend32(color15b) << 16));
}
}
else
{
const u32 a = ZeroExtend32(s_status.data_output_bit15.GetValue()) << 15;
for (u32 i = 0; i < static_cast<u32>(s_block_rgb.size());)
{
#define E8TO5(color) (std::min<u32>((((color) + 4) >> 3), 0x1F))
u32 color = s_block_rgb[i++];
u32 r = E8TO5(color & 0xFFu);
u32 g = E8TO5((color >> 8) & 0xFFu);
u32 b = E8TO5((color >> 16) & 0xFFu);
const u32 color15a = r | (g << 5) | (b << 10) | a;
color = s_block_rgb[i++];
r = E8TO5(color & 0xFFu);
g = E8TO5((color >> 8) & 0xFFu);
b = E8TO5((color >> 16) & 0xFFu);
const u32 color15b = r | (g << 5) | (b << 10) | a;
#undef E8TO5
s_data_out_fifo.Push(color15a | (color15b << 16));
}
}
}
break;
default:
break;
}
Log_DebugPrintf("Block copied out, fifo size = %u (%u bytes)", s_data_out_fifo.GetSize(),
static_cast<u32>(s_data_out_fifo.GetSize() * sizeof(u32)));
// if we've copied out all blocks, command is complete
s_state = (s_remaining_halfwords == 0) ? State::Idle : State::DecodingMacroblock;
Execute();
}
static constexpr std::array<u8, 64> zagzig = {{0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63}};
bool MDEC::rl_decode_block(s16* blk, const u8* qt)
{
if (s_current_coefficient == 64)
{
std::fill_n(blk, 64, s16(0));
// skip padding at start
u16 n;
for (;;)
{
if (s_data_in_fifo.IsEmpty() || s_remaining_halfwords == 0)
return false;
n = s_data_in_fifo.Pop();
s_remaining_halfwords--;
if (n == 0xFE00)
continue;
else
break;
}
s_current_coefficient = 0;
s_current_q_scale = (n >> 10) & 0x3F;
s32 val =
SignExtendN<10, s32>(static_cast<s32>(n & 0x3FF)) * static_cast<s32>(ZeroExtend32(qt[s_current_coefficient]));
if (s_current_q_scale == 0)
val = SignExtendN<10, s32>(static_cast<s32>(n & 0x3FF)) * 2;
val = std::clamp(val, -0x400, 0x3FF);
if (s_current_q_scale > 0)
blk[zagzig[s_current_coefficient]] = static_cast<s16>(val);
else
blk[s_current_coefficient] = static_cast<s16>(val);
}
while (!s_data_in_fifo.IsEmpty() && s_remaining_halfwords > 0)
{
u16 n = s_data_in_fifo.Pop();
s_remaining_halfwords--;
s_current_coefficient += ((n >> 10) & 0x3F) + 1;
if (s_current_coefficient < 64)
{
s32 val = (SignExtendN<10, s32>(static_cast<s32>(n & 0x3FF)) *
static_cast<s32>(ZeroExtend32(qt[s_current_coefficient])) * static_cast<s32>(s_current_q_scale) +
4) /
8;
if (s_current_q_scale == 0)
val = SignExtendN<10, s32>(static_cast<s32>(n & 0x3FF)) * 2;
val = std::clamp(val, -0x400, 0x3FF);
if (s_current_q_scale > 0)
blk[zagzig[s_current_coefficient]] = static_cast<s16>(val);
else
blk[s_current_coefficient] = static_cast<s16>(val);
}
if (s_current_coefficient >= 63)
{
s_current_coefficient = 64;
return true;
}
}
return false;
}
void MDEC::IDCT(s16* blk)
{
// people have made texture packs using the old conversion routines.. best to just leave them be.
if (g_settings.use_old_mdec_routines) [[unlikely]]
IDCT_Old(blk);
else
IDCT_New(blk);
}
void MDEC::IDCT_New(s16* blk)
{
std::array<s32, 64> temp;
for (u32 x = 0; x < 8; x++)
{
for (u32 y = 0; y < 8; y++)
{
// TODO: We could alter zigzag and invert scale_table to get these in row-major order,
// in which case we could do optimize this to a vector multiply.
s32 sum = 0;
for (u32 z = 0; z < 8; z++)
sum += s32(blk[y + z * 8]) * s32(s_scale_table[x + z * 8] / 8);
temp[x + y * 8] = static_cast<s32>((sum + 0xfff) / 0x2000);
}
}
for (u32 x = 0; x < 8; x++)
{
for (u32 y = 0; y < 8; y++)
{
s32 sum = 0;
for (u32 z = 0; z < 8; z++)
sum += temp[y + z * 8] * s32(s_scale_table[x + z * 8] / 8);
blk[x + y * 8] = static_cast<s16>(std::clamp<s32>((sum + 0xfff) / 0x2000, -128, 127));
}
}
}
void MDEC::IDCT_Old(s16* blk)
{
std::array<s64, 64> temp_buffer;
for (u32 x = 0; x < 8; x++)
{
for (u32 y = 0; y < 8; y++)
{
s64 sum = 0;
for (u32 u = 0; u < 8; u++)
sum += s32(blk[u * 8 + x]) * s32(s_scale_table[u * 8 + y]);
temp_buffer[x + y * 8] = sum;
}
}
for (u32 x = 0; x < 8; x++)
{
for (u32 y = 0; y < 8; y++)
{
s64 sum = 0;
for (u32 u = 0; u < 8; u++)
sum += s64(temp_buffer[u + y * 8]) * s32(s_scale_table[u * 8 + x]);
blk[x + y * 8] =
static_cast<s16>(std::clamp<s32>(SignExtendN<9, s32>((sum >> 32) + ((sum >> 31) & 1)), -128, 127));
}
}
}
void MDEC::yuv_to_rgb(u32 xx, u32 yy, const std::array<s16, 64>& Crblk, const std::array<s16, 64>& Cbblk,
const std::array<s16, 64>& Yblk)
{
const s16 addval = s_status.data_output_signed ? 0 : 0x80;
for (u32 y = 0; y < 8; y++)
{
for (u32 x = 0; x < 8; x++)
{
s16 R = Crblk[((x + xx) / 2) + ((y + yy) / 2) * 8];
s16 B = Cbblk[((x + xx) / 2) + ((y + yy) / 2) * 8];
s16 G = static_cast<s16>((-0.3437f * static_cast<float>(B)) + (-0.7143f * static_cast<float>(R)));
R = static_cast<s16>(1.402f * static_cast<float>(R));
B = static_cast<s16>(1.772f * static_cast<float>(B));
s16 Y = Yblk[x + y * 8];
R = static_cast<s16>(std::clamp(static_cast<int>(Y) + R, -128, 127)) + addval;
G = static_cast<s16>(std::clamp(static_cast<int>(Y) + G, -128, 127)) + addval;
B = static_cast<s16>(std::clamp(static_cast<int>(Y) + B, -128, 127)) + addval;
s_block_rgb[(x + xx) + ((y + yy) * 16)] = ZeroExtend32(static_cast<u16>(R)) |
(ZeroExtend32(static_cast<u16>(G)) << 8) |
(ZeroExtend32(static_cast<u16>(B)) << 16);
}
}
}
void MDEC::y_to_mono(const std::array<s16, 64>& Yblk)
{
for (u32 i = 0; i < 64; i++)
{
s16 Y = Yblk[i];
Y = SignExtendN<10, s16>(Y);
Y = std::clamp<s16>(Y, -128, 127);
Y += 128;
s_block_rgb[i] = static_cast<u32>(Y) & 0xFF;
}
}
void MDEC::HandleSetQuantTableCommand()
{
DebugAssert(s_remaining_halfwords >= 32);
// TODO: Remove extra copies..
std::array<u16, 32> packed_data;
s_data_in_fifo.PopRange(packed_data.data(), static_cast<u32>(packed_data.size()));
s_remaining_halfwords -= 32;
std::memcpy(s_iq_y.data(), packed_data.data(), s_iq_y.size());
if (s_remaining_halfwords > 0)
{
DebugAssert(s_remaining_halfwords >= 32);
s_data_in_fifo.PopRange(packed_data.data(), static_cast<u32>(packed_data.size()));
std::memcpy(s_iq_uv.data(), packed_data.data(), s_iq_uv.size());
}
}
void MDEC::HandleSetScaleCommand()
{
DebugAssert(s_remaining_halfwords == 64);
// TODO: Remove extra copies..
std::array<u16, 64> packed_data;
s_data_in_fifo.PopRange(packed_data.data(), static_cast<u32>(packed_data.size()));
s_remaining_halfwords -= 32;
std::memcpy(s_scale_table.data(), packed_data.data(), s_scale_table.size() * sizeof(s16));
}
void MDEC::DrawDebugStateWindow()
{
const float framebuffer_scale = Host::GetOSDScale();
ImGui::SetNextWindowSize(ImVec2(300.0f * framebuffer_scale, 350.0f * framebuffer_scale), ImGuiCond_FirstUseEver);
if (!ImGui::Begin("MDEC State", nullptr))
{
ImGui::End();
return;
}
static constexpr std::array<const char*, 5> state_names = {
{"None", "Decoding Macroblock", "Writing Macroblock", "SetIqTab", "SetScale"}};
static constexpr std::array<const char*, 4> output_depths = {{"4-bit", "8-bit", "24-bit", "15-bit"}};
static constexpr std::array<const char*, 7> block_names = {{"Crblk", "Cbblk", "Y1", "Y2", "Y3", "Y4", "Output"}};
ImGui::Text("Blocks Decoded: %u", s_total_blocks_decoded);
ImGui::Text("Data-In FIFO Size: %u (%u bytes)", s_data_in_fifo.GetSize(), s_data_in_fifo.GetSize() * 4);
ImGui::Text("Data-Out FIFO Size: %u (%u bytes)", s_data_out_fifo.GetSize(), s_data_out_fifo.GetSize() * 4);
ImGui::Text("DMA Enable: %s%s", s_enable_dma_in ? "In " : "", s_enable_dma_out ? "Out" : "");
ImGui::Text("Current State: %s", state_names[static_cast<u8>(s_state)]);
ImGui::Text("Current Block: %s", block_names[s_current_block]);
ImGui::Text("Current Coefficient: %u", s_current_coefficient);
if (ImGui::CollapsingHeader("Status", ImGuiTreeNodeFlags_DefaultOpen))
{
ImGui::Text("Data-Out FIFO Empty: %s", s_status.data_out_fifo_empty ? "Yes" : "No");
ImGui::Text("Data-In FIFO Full: %s", s_status.data_in_fifo_full ? "Yes" : "No");
ImGui::Text("Command Busy: %s", s_status.command_busy ? "Yes" : "No");
ImGui::Text("Data-In Request: %s", s_status.data_in_request ? "Yes" : "No");
ImGui::Text("Output Depth: %s", output_depths[static_cast<u8>(s_status.data_output_depth.GetValue())]);
ImGui::Text("Output Signed: %s", s_status.data_output_signed ? "Yes" : "No");
ImGui::Text("Output Bit 15: %u", ZeroExtend32(s_status.data_output_bit15.GetValue()));
ImGui::Text("Current Block: %u", ZeroExtend32(s_status.current_block.GetValue()));
ImGui::Text("Parameter Words Remaining: %d",
static_cast<s32>(SignExtend32(s_status.parameter_words_remaining.GetValue())));
}
ImGui::End();
}