mirror of
https://github.com/RetroDECK/Duckstation.git
synced 2024-11-27 16:15:41 +00:00
2099 lines
58 KiB
C++
2099 lines
58 KiB
C++
#include "cpu_core.h"
|
|
#include "bus.h"
|
|
#include "common/align.h"
|
|
#include "common/file_system.h"
|
|
#include "common/log.h"
|
|
#include "common/state_wrapper.h"
|
|
#include "cpu_core_private.h"
|
|
#include "cpu_disasm.h"
|
|
#include "cpu_recompiler_thunks.h"
|
|
#include "gte.h"
|
|
#include "host_interface.h"
|
|
#include "pgxp.h"
|
|
#include "settings.h"
|
|
#include "system.h"
|
|
#include "timing_event.h"
|
|
#include <cstdio>
|
|
|
|
Log_SetChannel(CPU::Core);
|
|
|
|
namespace CPU {
|
|
|
|
static void SetPC(u32 new_pc);
|
|
static void UpdateLoadDelay();
|
|
static void Branch(u32 target);
|
|
static void FlushPipeline();
|
|
|
|
State g_state;
|
|
bool g_using_interpreter = false;
|
|
bool TRACE_EXECUTION = false;
|
|
|
|
static std::FILE* s_log_file = nullptr;
|
|
static bool s_log_file_opened = false;
|
|
static bool s_trace_to_log = false;
|
|
|
|
static constexpr u32 INVALID_BREAKPOINT_PC = UINT32_C(0xFFFFFFFF);
|
|
static std::vector<Breakpoint> s_breakpoints;
|
|
static u32 s_breakpoint_counter = 1;
|
|
static u32 s_last_breakpoint_check_pc = INVALID_BREAKPOINT_PC;
|
|
static bool s_single_step = false;
|
|
|
|
bool IsTraceEnabled()
|
|
{
|
|
return s_trace_to_log;
|
|
}
|
|
|
|
void StartTrace()
|
|
{
|
|
if (s_trace_to_log)
|
|
return;
|
|
|
|
s_trace_to_log = true;
|
|
UpdateDebugDispatcherFlag();
|
|
}
|
|
|
|
void StopTrace()
|
|
{
|
|
if (!s_trace_to_log)
|
|
return;
|
|
|
|
if (s_log_file)
|
|
std::fclose(s_log_file);
|
|
|
|
s_log_file_opened = false;
|
|
s_trace_to_log = false;
|
|
UpdateDebugDispatcherFlag();
|
|
}
|
|
|
|
void WriteToExecutionLog(const char* format, ...)
|
|
{
|
|
std::va_list ap;
|
|
va_start(ap, format);
|
|
|
|
if (!s_log_file_opened)
|
|
{
|
|
s_log_file = FileSystem::OpenCFile("cpu_log.txt", "wb");
|
|
s_log_file_opened = true;
|
|
}
|
|
|
|
if (s_log_file)
|
|
{
|
|
std::vfprintf(s_log_file, format, ap);
|
|
#ifdef _DEBUG
|
|
std::fflush(s_log_file);
|
|
#endif
|
|
}
|
|
|
|
va_end(ap);
|
|
}
|
|
|
|
void Initialize()
|
|
{
|
|
// From nocash spec.
|
|
g_state.cop0_regs.PRID = UINT32_C(0x00000002);
|
|
|
|
g_state.use_debug_dispatcher = false;
|
|
s_breakpoints.clear();
|
|
s_breakpoint_counter = 1;
|
|
s_last_breakpoint_check_pc = INVALID_BREAKPOINT_PC;
|
|
s_single_step = false;
|
|
|
|
UpdateFastmemBase();
|
|
|
|
GTE::Initialize();
|
|
}
|
|
|
|
void Shutdown()
|
|
{
|
|
ClearBreakpoints();
|
|
StopTrace();
|
|
}
|
|
|
|
void Reset()
|
|
{
|
|
g_state.pending_ticks = 0;
|
|
g_state.downcount = 0;
|
|
|
|
g_state.regs = {};
|
|
|
|
g_state.cop0_regs.BPC = 0;
|
|
g_state.cop0_regs.BDA = 0;
|
|
g_state.cop0_regs.TAR = 0;
|
|
g_state.cop0_regs.BadVaddr = 0;
|
|
g_state.cop0_regs.BDAM = 0;
|
|
g_state.cop0_regs.BPCM = 0;
|
|
g_state.cop0_regs.EPC = 0;
|
|
g_state.cop0_regs.sr.bits = 0;
|
|
g_state.cop0_regs.cause.bits = 0;
|
|
|
|
ClearICache();
|
|
UpdateFastmemBase();
|
|
|
|
GTE::Reset();
|
|
|
|
SetPC(RESET_VECTOR);
|
|
}
|
|
|
|
bool DoState(StateWrapper& sw)
|
|
{
|
|
sw.Do(&g_state.pending_ticks);
|
|
sw.Do(&g_state.downcount);
|
|
sw.DoArray(g_state.regs.r, countof(g_state.regs.r));
|
|
sw.Do(&g_state.cop0_regs.BPC);
|
|
sw.Do(&g_state.cop0_regs.BDA);
|
|
sw.Do(&g_state.cop0_regs.TAR);
|
|
sw.Do(&g_state.cop0_regs.BadVaddr);
|
|
sw.Do(&g_state.cop0_regs.BDAM);
|
|
sw.Do(&g_state.cop0_regs.BPCM);
|
|
sw.Do(&g_state.cop0_regs.EPC);
|
|
sw.Do(&g_state.cop0_regs.PRID);
|
|
sw.Do(&g_state.cop0_regs.sr.bits);
|
|
sw.Do(&g_state.cop0_regs.cause.bits);
|
|
sw.Do(&g_state.cop0_regs.dcic.bits);
|
|
sw.Do(&g_state.next_instruction.bits);
|
|
sw.Do(&g_state.current_instruction.bits);
|
|
sw.Do(&g_state.current_instruction_pc);
|
|
sw.Do(&g_state.current_instruction_in_branch_delay_slot);
|
|
sw.Do(&g_state.current_instruction_was_branch_taken);
|
|
sw.Do(&g_state.next_instruction_is_branch_delay_slot);
|
|
sw.Do(&g_state.branch_was_taken);
|
|
sw.Do(&g_state.exception_raised);
|
|
sw.Do(&g_state.interrupt_delay);
|
|
sw.Do(&g_state.load_delay_reg);
|
|
sw.Do(&g_state.load_delay_value);
|
|
sw.Do(&g_state.next_load_delay_reg);
|
|
sw.Do(&g_state.next_load_delay_value);
|
|
sw.Do(&g_state.cache_control.bits);
|
|
sw.DoBytes(g_state.dcache.data(), g_state.dcache.size());
|
|
|
|
if (!GTE::DoState(sw))
|
|
return false;
|
|
|
|
if (sw.GetVersion() < 48)
|
|
{
|
|
DebugAssert(sw.IsReading());
|
|
ClearICache();
|
|
}
|
|
else
|
|
{
|
|
sw.Do(&g_state.icache_tags);
|
|
sw.Do(&g_state.icache_data);
|
|
}
|
|
|
|
if (sw.IsReading())
|
|
{
|
|
UpdateFastmemBase();
|
|
g_state.gte_completion_tick = 0;
|
|
}
|
|
|
|
return !sw.HasError();
|
|
}
|
|
|
|
void UpdateFastmemBase()
|
|
{
|
|
if (g_state.cop0_regs.sr.Isc)
|
|
g_state.fastmem_base = nullptr;
|
|
else
|
|
g_state.fastmem_base = Bus::GetFastmemBase();
|
|
}
|
|
|
|
ALWAYS_INLINE_RELEASE void SetPC(u32 new_pc)
|
|
{
|
|
DebugAssert(Common::IsAlignedPow2(new_pc, 4));
|
|
g_state.regs.npc = new_pc;
|
|
FlushPipeline();
|
|
}
|
|
|
|
ALWAYS_INLINE_RELEASE void Branch(u32 target)
|
|
{
|
|
if (!Common::IsAlignedPow2(target, 4))
|
|
{
|
|
// The BadVaddr and EPC must be set to the fetching address, not the instruction about to execute.
|
|
g_state.cop0_regs.BadVaddr = target;
|
|
RaiseException(Cop0Registers::CAUSE::MakeValueForException(Exception::AdEL, false, false, 0), target);
|
|
return;
|
|
}
|
|
|
|
g_state.regs.npc = target;
|
|
g_state.branch_was_taken = true;
|
|
}
|
|
|
|
ALWAYS_INLINE static u32 GetExceptionVector(bool debug_exception = false)
|
|
{
|
|
const u32 base = g_state.cop0_regs.sr.BEV ? UINT32_C(0xbfc00100) : UINT32_C(0x80000000);
|
|
return base | (debug_exception ? UINT32_C(0x00000040) : UINT32_C(0x00000080));
|
|
}
|
|
|
|
ALWAYS_INLINE_RELEASE static void RaiseException(u32 CAUSE_bits, u32 EPC, u32 vector)
|
|
{
|
|
g_state.cop0_regs.EPC = EPC;
|
|
g_state.cop0_regs.cause.bits = (g_state.cop0_regs.cause.bits & ~Cop0Registers::CAUSE::EXCEPTION_WRITE_MASK) |
|
|
(CAUSE_bits & Cop0Registers::CAUSE::EXCEPTION_WRITE_MASK);
|
|
|
|
#ifdef _DEBUG
|
|
if (g_state.cop0_regs.cause.Excode != Exception::INT && g_state.cop0_regs.cause.Excode != Exception::Syscall &&
|
|
g_state.cop0_regs.cause.Excode != Exception::BP)
|
|
{
|
|
Log_DevPrintf("Exception %u at 0x%08X (epc=0x%08X, BD=%s, CE=%u)",
|
|
static_cast<u8>(g_state.cop0_regs.cause.Excode.GetValue()), g_state.current_instruction_pc,
|
|
g_state.cop0_regs.EPC, g_state.cop0_regs.cause.BD ? "true" : "false",
|
|
g_state.cop0_regs.cause.CE.GetValue());
|
|
DisassembleAndPrint(g_state.current_instruction_pc, 4, 0);
|
|
if (s_trace_to_log)
|
|
{
|
|
CPU::WriteToExecutionLog("Exception %u at 0x%08X (epc=0x%08X, BD=%s, CE=%u)\n",
|
|
static_cast<u8>(g_state.cop0_regs.cause.Excode.GetValue()),
|
|
g_state.current_instruction_pc, g_state.cop0_regs.EPC,
|
|
g_state.cop0_regs.cause.BD ? "true" : "false", g_state.cop0_regs.cause.CE.GetValue());
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (g_state.cop0_regs.cause.BD)
|
|
{
|
|
// TAR is set to the address which was being fetched in this instruction, or the next instruction to execute if the
|
|
// exception hadn't occurred in the delay slot.
|
|
g_state.cop0_regs.EPC -= UINT32_C(4);
|
|
g_state.cop0_regs.TAR = g_state.regs.pc;
|
|
}
|
|
|
|
// current -> previous, switch to kernel mode and disable interrupts
|
|
g_state.cop0_regs.sr.mode_bits <<= 2;
|
|
|
|
// flush the pipeline - we don't want to execute the previously fetched instruction
|
|
g_state.regs.npc = vector;
|
|
g_state.exception_raised = true;
|
|
FlushPipeline();
|
|
}
|
|
|
|
ALWAYS_INLINE_RELEASE static void DispatchCop0Breakpoint()
|
|
{
|
|
// When a breakpoint address match occurs the PSX jumps to 80000040h (ie. unlike normal exceptions, not to 80000080h).
|
|
// The Excode value in the CAUSE register is set to 09h (same as BREAK opcode), and EPC contains the return address,
|
|
// as usually. One of the first things to be done in the exception handler is to disable breakpoints (eg. if the
|
|
// any-jump break is enabled, then it must be disabled BEFORE jumping from 80000040h to the actual exception handler).
|
|
RaiseException(Cop0Registers::CAUSE::MakeValueForException(
|
|
Exception::BP, g_state.current_instruction_in_branch_delay_slot,
|
|
g_state.current_instruction_was_branch_taken, g_state.current_instruction.cop.cop_n),
|
|
g_state.current_instruction_pc, GetExceptionVector(true));
|
|
}
|
|
|
|
void RaiseException(u32 CAUSE_bits, u32 EPC)
|
|
{
|
|
RaiseException(CAUSE_bits, EPC, GetExceptionVector());
|
|
}
|
|
|
|
void RaiseException(Exception excode)
|
|
{
|
|
RaiseException(Cop0Registers::CAUSE::MakeValueForException(excode, g_state.current_instruction_in_branch_delay_slot,
|
|
g_state.current_instruction_was_branch_taken,
|
|
g_state.current_instruction.cop.cop_n),
|
|
g_state.current_instruction_pc, GetExceptionVector());
|
|
}
|
|
|
|
void SetExternalInterrupt(u8 bit)
|
|
{
|
|
g_state.cop0_regs.cause.Ip |= static_cast<u8>(1u << bit);
|
|
|
|
if (g_settings.cpu_execution_mode == CPUExecutionMode::Interpreter)
|
|
{
|
|
g_state.interrupt_delay = 1;
|
|
}
|
|
else
|
|
{
|
|
g_state.interrupt_delay = 0;
|
|
CheckForPendingInterrupt();
|
|
}
|
|
}
|
|
|
|
void ClearExternalInterrupt(u8 bit)
|
|
{
|
|
g_state.cop0_regs.cause.Ip &= static_cast<u8>(~(1u << bit));
|
|
}
|
|
|
|
ALWAYS_INLINE_RELEASE static void UpdateLoadDelay()
|
|
{
|
|
// the old value is needed in case the delay slot instruction overwrites the same register
|
|
if (g_state.load_delay_reg != Reg::count)
|
|
g_state.regs.r[static_cast<u8>(g_state.load_delay_reg)] = g_state.load_delay_value;
|
|
|
|
g_state.load_delay_reg = g_state.next_load_delay_reg;
|
|
g_state.load_delay_value = g_state.next_load_delay_value;
|
|
g_state.next_load_delay_reg = Reg::count;
|
|
}
|
|
|
|
ALWAYS_INLINE_RELEASE static void FlushPipeline()
|
|
{
|
|
// loads are flushed
|
|
g_state.next_load_delay_reg = Reg::count;
|
|
if (g_state.load_delay_reg != Reg::count)
|
|
{
|
|
g_state.regs.r[static_cast<u8>(g_state.load_delay_reg)] = g_state.load_delay_value;
|
|
g_state.load_delay_reg = Reg::count;
|
|
}
|
|
|
|
// not in a branch delay slot
|
|
g_state.branch_was_taken = false;
|
|
g_state.next_instruction_is_branch_delay_slot = false;
|
|
g_state.current_instruction_pc = g_state.regs.pc;
|
|
|
|
// prefetch the next instruction
|
|
FetchInstruction();
|
|
|
|
// and set it as the next one to execute
|
|
g_state.current_instruction.bits = g_state.next_instruction.bits;
|
|
g_state.current_instruction_in_branch_delay_slot = false;
|
|
g_state.current_instruction_was_branch_taken = false;
|
|
}
|
|
|
|
ALWAYS_INLINE static u32 ReadReg(Reg rs)
|
|
{
|
|
return g_state.regs.r[static_cast<u8>(rs)];
|
|
}
|
|
|
|
ALWAYS_INLINE static void WriteReg(Reg rd, u32 value)
|
|
{
|
|
g_state.regs.r[static_cast<u8>(rd)] = value;
|
|
g_state.load_delay_reg = (rd == g_state.load_delay_reg) ? Reg::count : g_state.load_delay_reg;
|
|
|
|
// prevent writes to $zero from going through - better than branching/cmov
|
|
g_state.regs.zero = 0;
|
|
}
|
|
|
|
ALWAYS_INLINE_RELEASE static void WriteRegDelayed(Reg rd, u32 value)
|
|
{
|
|
DebugAssert(g_state.next_load_delay_reg == Reg::count);
|
|
if (rd == Reg::zero)
|
|
return;
|
|
|
|
// double load delays ignore the first value
|
|
if (g_state.load_delay_reg == rd)
|
|
g_state.load_delay_reg = Reg::count;
|
|
|
|
// save the old value, if something else overwrites this reg we want to preserve it
|
|
g_state.next_load_delay_reg = rd;
|
|
g_state.next_load_delay_value = value;
|
|
}
|
|
|
|
ALWAYS_INLINE_RELEASE static u32 ReadCop0Reg(Cop0Reg reg)
|
|
{
|
|
switch (reg)
|
|
{
|
|
case Cop0Reg::BPC:
|
|
return g_state.cop0_regs.BPC;
|
|
|
|
case Cop0Reg::BPCM:
|
|
return g_state.cop0_regs.BPCM;
|
|
|
|
case Cop0Reg::BDA:
|
|
return g_state.cop0_regs.BDA;
|
|
|
|
case Cop0Reg::BDAM:
|
|
return g_state.cop0_regs.BDAM;
|
|
|
|
case Cop0Reg::DCIC:
|
|
return g_state.cop0_regs.dcic.bits;
|
|
|
|
case Cop0Reg::JUMPDEST:
|
|
return g_state.cop0_regs.TAR;
|
|
|
|
case Cop0Reg::BadVaddr:
|
|
return g_state.cop0_regs.BadVaddr;
|
|
|
|
case Cop0Reg::SR:
|
|
return g_state.cop0_regs.sr.bits;
|
|
|
|
case Cop0Reg::CAUSE:
|
|
return g_state.cop0_regs.cause.bits;
|
|
|
|
case Cop0Reg::EPC:
|
|
return g_state.cop0_regs.EPC;
|
|
|
|
case Cop0Reg::PRID:
|
|
return g_state.cop0_regs.PRID;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
ALWAYS_INLINE_RELEASE static void WriteCop0Reg(Cop0Reg reg, u32 value)
|
|
{
|
|
switch (reg)
|
|
{
|
|
case Cop0Reg::BPC:
|
|
{
|
|
g_state.cop0_regs.BPC = value;
|
|
Log_DevPrintf("COP0 BPC <- %08X", value);
|
|
}
|
|
break;
|
|
|
|
case Cop0Reg::BPCM:
|
|
{
|
|
g_state.cop0_regs.BPCM = value;
|
|
Log_DevPrintf("COP0 BPCM <- %08X", value);
|
|
}
|
|
break;
|
|
|
|
case Cop0Reg::BDA:
|
|
{
|
|
g_state.cop0_regs.BDA = value;
|
|
Log_DevPrintf("COP0 BDA <- %08X", value);
|
|
}
|
|
break;
|
|
|
|
case Cop0Reg::BDAM:
|
|
{
|
|
g_state.cop0_regs.BDAM = value;
|
|
Log_DevPrintf("COP0 BDAM <- %08X", value);
|
|
}
|
|
break;
|
|
|
|
case Cop0Reg::JUMPDEST:
|
|
{
|
|
Log_WarningPrintf("Ignoring write to Cop0 JUMPDEST");
|
|
}
|
|
break;
|
|
|
|
case Cop0Reg::DCIC:
|
|
{
|
|
g_state.cop0_regs.dcic.bits =
|
|
(g_state.cop0_regs.dcic.bits & ~Cop0Registers::DCIC::WRITE_MASK) | (value & Cop0Registers::DCIC::WRITE_MASK);
|
|
Log_DevPrintf("COP0 DCIC <- %08X (now %08X)", value, g_state.cop0_regs.dcic.bits);
|
|
UpdateDebugDispatcherFlag();
|
|
}
|
|
break;
|
|
|
|
case Cop0Reg::SR:
|
|
{
|
|
g_state.cop0_regs.sr.bits =
|
|
(g_state.cop0_regs.sr.bits & ~Cop0Registers::SR::WRITE_MASK) | (value & Cop0Registers::SR::WRITE_MASK);
|
|
Log_DebugPrintf("COP0 SR <- %08X (now %08X)", value, g_state.cop0_regs.sr.bits);
|
|
CheckForPendingInterrupt();
|
|
}
|
|
break;
|
|
|
|
case Cop0Reg::CAUSE:
|
|
{
|
|
g_state.cop0_regs.cause.bits =
|
|
(g_state.cop0_regs.cause.bits & ~Cop0Registers::CAUSE::WRITE_MASK) | (value & Cop0Registers::CAUSE::WRITE_MASK);
|
|
Log_DebugPrintf("COP0 CAUSE <- %08X (now %08X)", value, g_state.cop0_regs.cause.bits);
|
|
CheckForPendingInterrupt();
|
|
}
|
|
break;
|
|
|
|
default:
|
|
Log_DevPrintf("Unknown COP0 reg write %u (%08X)", ZeroExtend32(static_cast<u8>(reg)), value);
|
|
break;
|
|
}
|
|
}
|
|
|
|
ALWAYS_INLINE_RELEASE void Cop0ExecutionBreakpointCheck()
|
|
{
|
|
if (!g_state.cop0_regs.dcic.ExecutionBreakpointsEnabled())
|
|
return;
|
|
|
|
const u32 pc = g_state.current_instruction_pc;
|
|
const u32 bpc = g_state.cop0_regs.BPC;
|
|
const u32 bpcm = g_state.cop0_regs.BPCM;
|
|
|
|
// Break condition is "((PC XOR BPC) AND BPCM)=0".
|
|
if (bpcm == 0 || ((pc ^ bpc) & bpcm) != 0u)
|
|
return;
|
|
|
|
Log_DevPrintf("Cop0 execution breakpoint at %08X", pc);
|
|
g_state.cop0_regs.dcic.status_any_break = true;
|
|
g_state.cop0_regs.dcic.status_bpc_code_break = true;
|
|
DispatchCop0Breakpoint();
|
|
}
|
|
|
|
template<MemoryAccessType type>
|
|
ALWAYS_INLINE_RELEASE void Cop0DataBreakpointCheck(VirtualMemoryAddress address)
|
|
{
|
|
if constexpr (type == MemoryAccessType::Read)
|
|
{
|
|
if (!g_state.cop0_regs.dcic.DataReadBreakpointsEnabled())
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
if (!g_state.cop0_regs.dcic.DataWriteBreakpointsEnabled())
|
|
return;
|
|
}
|
|
|
|
// Break condition is "((addr XOR BDA) AND BDAM)=0".
|
|
const u32 bda = g_state.cop0_regs.BDA;
|
|
const u32 bdam = g_state.cop0_regs.BDAM;
|
|
if (bdam == 0 || ((address ^ bda) & bdam) != 0u)
|
|
return;
|
|
|
|
Log_DevPrintf("Cop0 data breakpoint for %08X at %08X", address, g_state.current_instruction_pc);
|
|
|
|
g_state.cop0_regs.dcic.status_any_break = true;
|
|
g_state.cop0_regs.dcic.status_bda_data_break = true;
|
|
if constexpr (type == MemoryAccessType::Read)
|
|
g_state.cop0_regs.dcic.status_bda_data_read_break = true;
|
|
else
|
|
g_state.cop0_regs.dcic.status_bda_data_write_break = true;
|
|
|
|
DispatchCop0Breakpoint();
|
|
}
|
|
|
|
static void TracePrintInstruction()
|
|
{
|
|
const u32 pc = g_state.current_instruction_pc;
|
|
const u32 bits = g_state.current_instruction.bits;
|
|
|
|
TinyString instr;
|
|
TinyString comment;
|
|
DisassembleInstruction(&instr, pc, bits);
|
|
DisassembleInstructionComment(&comment, pc, bits, &g_state.regs);
|
|
if (!comment.IsEmpty())
|
|
{
|
|
for (u32 i = instr.GetLength(); i < 30; i++)
|
|
instr.AppendCharacter(' ');
|
|
instr.AppendString("; ");
|
|
instr.AppendString(comment);
|
|
}
|
|
|
|
std::printf("%08x: %08x %s\n", pc, bits, instr.GetCharArray());
|
|
}
|
|
|
|
static void PrintInstruction(u32 bits, u32 pc, Registers* regs, const char* prefix)
|
|
{
|
|
TinyString instr;
|
|
TinyString comment;
|
|
DisassembleInstruction(&instr, pc, bits);
|
|
DisassembleInstructionComment(&comment, pc, bits, regs);
|
|
if (!comment.IsEmpty())
|
|
{
|
|
for (u32 i = instr.GetLength(); i < 30; i++)
|
|
instr.AppendCharacter(' ');
|
|
instr.AppendString("; ");
|
|
instr.AppendString(comment);
|
|
}
|
|
|
|
Log_DevPrintf("%s%08x: %08x %s", prefix, pc, bits, instr.GetCharArray());
|
|
}
|
|
|
|
static void LogInstruction(u32 bits, u32 pc, Registers* regs)
|
|
{
|
|
TinyString instr;
|
|
TinyString comment;
|
|
DisassembleInstruction(&instr, pc, bits);
|
|
DisassembleInstructionComment(&comment, pc, bits, regs);
|
|
if (!comment.IsEmpty())
|
|
{
|
|
for (u32 i = instr.GetLength(); i < 30; i++)
|
|
instr.AppendCharacter(' ');
|
|
instr.AppendString("; ");
|
|
instr.AppendString(comment);
|
|
}
|
|
|
|
WriteToExecutionLog("%08x: %08x %s\n", pc, bits, instr.GetCharArray());
|
|
}
|
|
|
|
ALWAYS_INLINE static constexpr bool AddOverflow(u32 old_value, u32 add_value, u32 new_value)
|
|
{
|
|
return (((new_value ^ old_value) & (new_value ^ add_value)) & UINT32_C(0x80000000)) != 0;
|
|
}
|
|
|
|
ALWAYS_INLINE static constexpr bool SubOverflow(u32 old_value, u32 sub_value, u32 new_value)
|
|
{
|
|
return (((new_value ^ old_value) & (old_value ^ sub_value)) & UINT32_C(0x80000000)) != 0;
|
|
}
|
|
|
|
void DisassembleAndPrint(u32 addr, const char* prefix)
|
|
{
|
|
u32 bits = 0;
|
|
SafeReadMemoryWord(addr, &bits);
|
|
PrintInstruction(bits, addr, &g_state.regs, prefix);
|
|
}
|
|
|
|
void DisassembleAndPrint(u32 addr, u32 instructions_before /* = 0 */, u32 instructions_after /* = 0 */)
|
|
{
|
|
u32 disasm_addr = addr - (instructions_before * sizeof(u32));
|
|
for (u32 i = 0; i < instructions_before; i++)
|
|
{
|
|
DisassembleAndPrint(disasm_addr, "");
|
|
disasm_addr += sizeof(u32);
|
|
}
|
|
|
|
// <= to include the instruction itself
|
|
for (u32 i = 0; i <= instructions_after; i++)
|
|
{
|
|
DisassembleAndPrint(disasm_addr, (i == 0) ? "---->" : "");
|
|
disasm_addr += sizeof(u32);
|
|
}
|
|
}
|
|
|
|
template<PGXPMode pgxp_mode, bool debug>
|
|
ALWAYS_INLINE_RELEASE static void ExecuteInstruction()
|
|
{
|
|
restart_instruction:
|
|
const Instruction inst = g_state.current_instruction;
|
|
|
|
#if 0
|
|
if (g_state.current_instruction_pc == 0x80030000)
|
|
{
|
|
TRACE_EXECUTION = true;
|
|
__debugbreak();
|
|
}
|
|
#endif
|
|
|
|
#ifdef _DEBUG
|
|
if (TRACE_EXECUTION)
|
|
TracePrintInstruction();
|
|
#endif
|
|
|
|
// Skip nops. Makes PGXP-CPU quicker, but also the regular interpreter.
|
|
if (inst.bits == 0)
|
|
return;
|
|
|
|
switch (inst.op)
|
|
{
|
|
case InstructionOp::funct:
|
|
{
|
|
switch (inst.r.funct)
|
|
{
|
|
case InstructionFunct::sll:
|
|
{
|
|
const u32 new_value = ReadReg(inst.r.rt) << inst.r.shamt;
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_SLL(inst.bits, ReadReg(inst.r.rt));
|
|
|
|
WriteReg(inst.r.rd, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::srl:
|
|
{
|
|
const u32 new_value = ReadReg(inst.r.rt) >> inst.r.shamt;
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_SRL(inst.bits, ReadReg(inst.r.rt));
|
|
|
|
WriteReg(inst.r.rd, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::sra:
|
|
{
|
|
const u32 new_value = static_cast<u32>(static_cast<s32>(ReadReg(inst.r.rt)) >> inst.r.shamt);
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_SRA(inst.bits, ReadReg(inst.r.rt));
|
|
|
|
WriteReg(inst.r.rd, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::sllv:
|
|
{
|
|
const u32 shift_amount = ReadReg(inst.r.rs) & UINT32_C(0x1F);
|
|
const u32 new_value = ReadReg(inst.r.rt) << shift_amount;
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_SLLV(inst.bits, ReadReg(inst.r.rt), shift_amount);
|
|
|
|
WriteReg(inst.r.rd, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::srlv:
|
|
{
|
|
const u32 shift_amount = ReadReg(inst.r.rs) & UINT32_C(0x1F);
|
|
const u32 new_value = ReadReg(inst.r.rt) >> shift_amount;
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_SRLV(inst.bits, ReadReg(inst.r.rt), shift_amount);
|
|
|
|
WriteReg(inst.r.rd, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::srav:
|
|
{
|
|
const u32 shift_amount = ReadReg(inst.r.rs) & UINT32_C(0x1F);
|
|
const u32 new_value = static_cast<u32>(static_cast<s32>(ReadReg(inst.r.rt)) >> shift_amount);
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_SRAV(inst.bits, ReadReg(inst.r.rt), shift_amount);
|
|
|
|
WriteReg(inst.r.rd, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::and_:
|
|
{
|
|
const u32 new_value = ReadReg(inst.r.rs) & ReadReg(inst.r.rt);
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_AND_(inst.bits, ReadReg(inst.r.rs), ReadReg(inst.r.rt));
|
|
|
|
WriteReg(inst.r.rd, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::or_:
|
|
{
|
|
const u32 new_value = ReadReg(inst.r.rs) | ReadReg(inst.r.rt);
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_OR_(inst.bits, ReadReg(inst.r.rs), ReadReg(inst.r.rt));
|
|
|
|
WriteReg(inst.r.rd, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::xor_:
|
|
{
|
|
const u32 new_value = ReadReg(inst.r.rs) ^ ReadReg(inst.r.rt);
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_XOR_(inst.bits, ReadReg(inst.r.rs), ReadReg(inst.r.rt));
|
|
|
|
WriteReg(inst.r.rd, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::nor:
|
|
{
|
|
const u32 new_value = ~(ReadReg(inst.r.rs) | ReadReg(inst.r.rt));
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_NOR(inst.bits, ReadReg(inst.r.rs), ReadReg(inst.r.rt));
|
|
|
|
WriteReg(inst.r.rd, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::add:
|
|
{
|
|
const u32 old_value = ReadReg(inst.r.rs);
|
|
const u32 add_value = ReadReg(inst.r.rt);
|
|
const u32 new_value = old_value + add_value;
|
|
if (AddOverflow(old_value, add_value, new_value))
|
|
{
|
|
RaiseException(Exception::Ov);
|
|
return;
|
|
}
|
|
|
|
if constexpr (pgxp_mode == PGXPMode::CPU)
|
|
PGXP::CPU_ADD(inst.bits, ReadReg(inst.r.rs), ReadReg(inst.r.rt));
|
|
else if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
{
|
|
if (add_value == 0)
|
|
{
|
|
PGXP::CPU_MOVE((static_cast<u32>(inst.r.rd.GetValue()) << 8) | static_cast<u32>(inst.r.rs.GetValue()),
|
|
old_value);
|
|
}
|
|
}
|
|
|
|
WriteReg(inst.r.rd, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::addu:
|
|
{
|
|
const u32 old_value = ReadReg(inst.r.rs);
|
|
const u32 add_value = ReadReg(inst.r.rt);
|
|
const u32 new_value = old_value + add_value;
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_ADD(inst.bits, old_value, add_value);
|
|
else if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
{
|
|
if (add_value == 0)
|
|
{
|
|
PGXP::CPU_MOVE((static_cast<u32>(inst.r.rd.GetValue()) << 8) | static_cast<u32>(inst.r.rs.GetValue()),
|
|
old_value);
|
|
}
|
|
}
|
|
|
|
WriteReg(inst.r.rd, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::sub:
|
|
{
|
|
const u32 old_value = ReadReg(inst.r.rs);
|
|
const u32 sub_value = ReadReg(inst.r.rt);
|
|
const u32 new_value = old_value - sub_value;
|
|
if (SubOverflow(old_value, sub_value, new_value))
|
|
{
|
|
RaiseException(Exception::Ov);
|
|
return;
|
|
}
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_SUB(inst.bits, ReadReg(inst.r.rs), ReadReg(inst.r.rt));
|
|
|
|
WriteReg(inst.r.rd, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::subu:
|
|
{
|
|
const u32 new_value = ReadReg(inst.r.rs) - ReadReg(inst.r.rt);
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_SUB(inst.bits, ReadReg(inst.r.rs), ReadReg(inst.r.rt));
|
|
|
|
WriteReg(inst.r.rd, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::slt:
|
|
{
|
|
const u32 result = BoolToUInt32(static_cast<s32>(ReadReg(inst.r.rs)) < static_cast<s32>(ReadReg(inst.r.rt)));
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_SLT(inst.bits, ReadReg(inst.r.rs), ReadReg(inst.r.rt));
|
|
|
|
WriteReg(inst.r.rd, result);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::sltu:
|
|
{
|
|
const u32 result = BoolToUInt32(ReadReg(inst.r.rs) < ReadReg(inst.r.rt));
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_SLTU(inst.bits, ReadReg(inst.r.rs), ReadReg(inst.r.rt));
|
|
|
|
WriteReg(inst.r.rd, result);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::mfhi:
|
|
{
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_MFHI(inst.bits, g_state.regs.hi);
|
|
|
|
WriteReg(inst.r.rd, g_state.regs.hi);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::mthi:
|
|
{
|
|
const u32 value = ReadReg(inst.r.rs);
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_MTHI(inst.bits, value);
|
|
|
|
g_state.regs.hi = value;
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::mflo:
|
|
{
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_MFLO(inst.bits, g_state.regs.lo);
|
|
|
|
WriteReg(inst.r.rd, g_state.regs.lo);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::mtlo:
|
|
{
|
|
const u32 value = ReadReg(inst.r.rs);
|
|
if constexpr (pgxp_mode == PGXPMode::CPU)
|
|
PGXP::CPU_MTLO(inst.bits, value);
|
|
|
|
g_state.regs.lo = value;
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::mult:
|
|
{
|
|
const u32 lhs = ReadReg(inst.r.rs);
|
|
const u32 rhs = ReadReg(inst.r.rt);
|
|
const u64 result =
|
|
static_cast<u64>(static_cast<s64>(SignExtend64(lhs)) * static_cast<s64>(SignExtend64(rhs)));
|
|
|
|
g_state.regs.hi = Truncate32(result >> 32);
|
|
g_state.regs.lo = Truncate32(result);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_MULT(inst.bits, lhs, rhs);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::multu:
|
|
{
|
|
const u32 lhs = ReadReg(inst.r.rs);
|
|
const u32 rhs = ReadReg(inst.r.rt);
|
|
const u64 result = ZeroExtend64(lhs) * ZeroExtend64(rhs);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_MULTU(inst.bits, lhs, rhs);
|
|
|
|
g_state.regs.hi = Truncate32(result >> 32);
|
|
g_state.regs.lo = Truncate32(result);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::div:
|
|
{
|
|
const s32 num = static_cast<s32>(ReadReg(inst.r.rs));
|
|
const s32 denom = static_cast<s32>(ReadReg(inst.r.rt));
|
|
|
|
if (denom == 0)
|
|
{
|
|
// divide by zero
|
|
g_state.regs.lo = (num >= 0) ? UINT32_C(0xFFFFFFFF) : UINT32_C(1);
|
|
g_state.regs.hi = static_cast<u32>(num);
|
|
}
|
|
else if (static_cast<u32>(num) == UINT32_C(0x80000000) && denom == -1)
|
|
{
|
|
// unrepresentable
|
|
g_state.regs.lo = UINT32_C(0x80000000);
|
|
g_state.regs.hi = 0;
|
|
}
|
|
else
|
|
{
|
|
g_state.regs.lo = static_cast<u32>(num / denom);
|
|
g_state.regs.hi = static_cast<u32>(num % denom);
|
|
}
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_DIV(inst.bits, num, denom);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::divu:
|
|
{
|
|
const u32 num = ReadReg(inst.r.rs);
|
|
const u32 denom = ReadReg(inst.r.rt);
|
|
|
|
if (denom == 0)
|
|
{
|
|
// divide by zero
|
|
g_state.regs.lo = UINT32_C(0xFFFFFFFF);
|
|
g_state.regs.hi = static_cast<u32>(num);
|
|
}
|
|
else
|
|
{
|
|
g_state.regs.lo = num / denom;
|
|
g_state.regs.hi = num % denom;
|
|
}
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_DIVU(inst.bits, num, denom);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::jr:
|
|
{
|
|
g_state.next_instruction_is_branch_delay_slot = true;
|
|
const u32 target = ReadReg(inst.r.rs);
|
|
Branch(target);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::jalr:
|
|
{
|
|
g_state.next_instruction_is_branch_delay_slot = true;
|
|
const u32 target = ReadReg(inst.r.rs);
|
|
WriteReg(inst.r.rd, g_state.regs.npc);
|
|
Branch(target);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::syscall:
|
|
{
|
|
RaiseException(Exception::Syscall);
|
|
}
|
|
break;
|
|
|
|
case InstructionFunct::break_:
|
|
{
|
|
RaiseException(Exception::BP);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
{
|
|
RaiseException(Exception::RI);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::lui:
|
|
{
|
|
const u32 value = inst.i.imm_zext32() << 16;
|
|
WriteReg(inst.i.rt, value);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_LUI(inst.bits);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::andi:
|
|
{
|
|
const u32 new_value = ReadReg(inst.i.rs) & inst.i.imm_zext32();
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_ANDI(inst.bits, ReadReg(inst.i.rs));
|
|
|
|
WriteReg(inst.i.rt, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::ori:
|
|
{
|
|
const u32 new_value = ReadReg(inst.i.rs) | inst.i.imm_zext32();
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_ORI(inst.bits, ReadReg(inst.i.rs));
|
|
|
|
WriteReg(inst.i.rt, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::xori:
|
|
{
|
|
const u32 new_value = ReadReg(inst.i.rs) ^ inst.i.imm_zext32();
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_XORI(inst.bits, ReadReg(inst.i.rs));
|
|
|
|
WriteReg(inst.i.rt, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::addi:
|
|
{
|
|
const u32 old_value = ReadReg(inst.i.rs);
|
|
const u32 add_value = inst.i.imm_sext32();
|
|
const u32 new_value = old_value + add_value;
|
|
if (AddOverflow(old_value, add_value, new_value))
|
|
{
|
|
RaiseException(Exception::Ov);
|
|
return;
|
|
}
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_ADDI(inst.bits, ReadReg(inst.i.rs));
|
|
else if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
{
|
|
if (add_value == 0)
|
|
{
|
|
PGXP::CPU_MOVE((static_cast<u32>(inst.i.rt.GetValue()) << 8) | static_cast<u32>(inst.i.rs.GetValue()),
|
|
old_value);
|
|
}
|
|
}
|
|
|
|
WriteReg(inst.i.rt, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::addiu:
|
|
{
|
|
const u32 old_value = ReadReg(inst.i.rs);
|
|
const u32 add_value = inst.i.imm_sext32();
|
|
const u32 new_value = old_value + add_value;
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_ADDI(inst.bits, ReadReg(inst.i.rs));
|
|
else if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
{
|
|
if (add_value == 0)
|
|
{
|
|
PGXP::CPU_MOVE((static_cast<u32>(inst.i.rt.GetValue()) << 8) | static_cast<u32>(inst.i.rs.GetValue()),
|
|
old_value);
|
|
}
|
|
}
|
|
|
|
WriteReg(inst.i.rt, new_value);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::slti:
|
|
{
|
|
const u32 result = BoolToUInt32(static_cast<s32>(ReadReg(inst.i.rs)) < static_cast<s32>(inst.i.imm_sext32()));
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_SLTI(inst.bits, ReadReg(inst.i.rs));
|
|
|
|
WriteReg(inst.i.rt, result);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::sltiu:
|
|
{
|
|
const u32 result = BoolToUInt32(ReadReg(inst.i.rs) < inst.i.imm_sext32());
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::CPU)
|
|
PGXP::CPU_SLTIU(inst.bits, ReadReg(inst.i.rs));
|
|
|
|
WriteReg(inst.i.rt, result);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::lb:
|
|
{
|
|
const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32();
|
|
if constexpr (debug)
|
|
Cop0DataBreakpointCheck<MemoryAccessType::Read>(addr);
|
|
|
|
u8 value;
|
|
if (!ReadMemoryByte(addr, &value))
|
|
return;
|
|
|
|
const u32 sxvalue = SignExtend32(value);
|
|
|
|
WriteRegDelayed(inst.i.rt, sxvalue);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_LBx(inst.bits, sxvalue, addr);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::lh:
|
|
{
|
|
const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32();
|
|
if constexpr (debug)
|
|
Cop0DataBreakpointCheck<MemoryAccessType::Read>(addr);
|
|
|
|
u16 value;
|
|
if (!ReadMemoryHalfWord(addr, &value))
|
|
return;
|
|
|
|
const u32 sxvalue = SignExtend32(value);
|
|
WriteRegDelayed(inst.i.rt, sxvalue);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_LHx(inst.bits, sxvalue, addr);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::lw:
|
|
{
|
|
const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32();
|
|
if constexpr (debug)
|
|
Cop0DataBreakpointCheck<MemoryAccessType::Read>(addr);
|
|
|
|
u32 value;
|
|
if (!ReadMemoryWord(addr, &value))
|
|
return;
|
|
|
|
WriteRegDelayed(inst.i.rt, value);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_LW(inst.bits, value, addr);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::lbu:
|
|
{
|
|
const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32();
|
|
if constexpr (debug)
|
|
Cop0DataBreakpointCheck<MemoryAccessType::Read>(addr);
|
|
|
|
u8 value;
|
|
if (!ReadMemoryByte(addr, &value))
|
|
return;
|
|
|
|
const u32 zxvalue = ZeroExtend32(value);
|
|
WriteRegDelayed(inst.i.rt, zxvalue);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_LBx(inst.bits, zxvalue, addr);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::lhu:
|
|
{
|
|
const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32();
|
|
if constexpr (debug)
|
|
Cop0DataBreakpointCheck<MemoryAccessType::Read>(addr);
|
|
|
|
u16 value;
|
|
if (!ReadMemoryHalfWord(addr, &value))
|
|
return;
|
|
|
|
const u32 zxvalue = ZeroExtend32(value);
|
|
WriteRegDelayed(inst.i.rt, zxvalue);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_LHx(inst.bits, zxvalue, addr);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::lwl:
|
|
case InstructionOp::lwr:
|
|
{
|
|
const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32();
|
|
const VirtualMemoryAddress aligned_addr = addr & ~UINT32_C(3);
|
|
if constexpr (debug)
|
|
Cop0DataBreakpointCheck<MemoryAccessType::Read>(addr);
|
|
|
|
u32 aligned_value;
|
|
if (!ReadMemoryWord(aligned_addr, &aligned_value))
|
|
return;
|
|
|
|
// Bypasses load delay. No need to check the old value since this is the delay slot or it's not relevant.
|
|
const u32 existing_value = (inst.i.rt == g_state.load_delay_reg) ? g_state.load_delay_value : ReadReg(inst.i.rt);
|
|
const u8 shift = (Truncate8(addr) & u8(3)) * u8(8);
|
|
u32 new_value;
|
|
if (inst.op == InstructionOp::lwl)
|
|
{
|
|
const u32 mask = UINT32_C(0x00FFFFFF) >> shift;
|
|
new_value = (existing_value & mask) | (aligned_value << (24 - shift));
|
|
}
|
|
else
|
|
{
|
|
const u32 mask = UINT32_C(0xFFFFFF00) << (24 - shift);
|
|
new_value = (existing_value & mask) | (aligned_value >> shift);
|
|
}
|
|
|
|
WriteRegDelayed(inst.i.rt, new_value);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_LW(inst.bits, new_value, addr);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::sb:
|
|
{
|
|
const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32();
|
|
if constexpr (debug)
|
|
Cop0DataBreakpointCheck<MemoryAccessType::Write>(addr);
|
|
|
|
const u32 value = ReadReg(inst.i.rt);
|
|
WriteMemoryByte(addr, value);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_SB(inst.bits, Truncate8(value), addr);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::sh:
|
|
{
|
|
const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32();
|
|
if constexpr (debug)
|
|
Cop0DataBreakpointCheck<MemoryAccessType::Write>(addr);
|
|
|
|
const u32 value = ReadReg(inst.i.rt);
|
|
WriteMemoryHalfWord(addr, value);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_SH(inst.bits, Truncate16(value), addr);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::sw:
|
|
{
|
|
const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32();
|
|
if constexpr (debug)
|
|
Cop0DataBreakpointCheck<MemoryAccessType::Write>(addr);
|
|
|
|
const u32 value = ReadReg(inst.i.rt);
|
|
WriteMemoryWord(addr, value);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_SW(inst.bits, value, addr);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::swl:
|
|
case InstructionOp::swr:
|
|
{
|
|
const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32();
|
|
const VirtualMemoryAddress aligned_addr = addr & ~UINT32_C(3);
|
|
if constexpr (debug)
|
|
Cop0DataBreakpointCheck<MemoryAccessType::Write>(aligned_addr);
|
|
|
|
const u32 reg_value = ReadReg(inst.i.rt);
|
|
const u8 shift = (Truncate8(addr) & u8(3)) * u8(8);
|
|
u32 mem_value;
|
|
if (!ReadMemoryWord(aligned_addr, &mem_value))
|
|
return;
|
|
|
|
u32 new_value;
|
|
if (inst.op == InstructionOp::swl)
|
|
{
|
|
const u32 mem_mask = UINT32_C(0xFFFFFF00) << shift;
|
|
new_value = (mem_value & mem_mask) | (reg_value >> (24 - shift));
|
|
}
|
|
else
|
|
{
|
|
const u32 mem_mask = UINT32_C(0x00FFFFFF) >> (24 - shift);
|
|
new_value = (mem_value & mem_mask) | (reg_value << shift);
|
|
}
|
|
|
|
WriteMemoryWord(aligned_addr, new_value);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_SW(inst.bits, new_value, addr);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::j:
|
|
{
|
|
g_state.next_instruction_is_branch_delay_slot = true;
|
|
Branch((g_state.regs.pc & UINT32_C(0xF0000000)) | (inst.j.target << 2));
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::jal:
|
|
{
|
|
WriteReg(Reg::ra, g_state.regs.npc);
|
|
g_state.next_instruction_is_branch_delay_slot = true;
|
|
Branch((g_state.regs.pc & UINT32_C(0xF0000000)) | (inst.j.target << 2));
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::beq:
|
|
{
|
|
// We're still flagged as a branch delay slot even if the branch isn't taken.
|
|
g_state.next_instruction_is_branch_delay_slot = true;
|
|
const bool branch = (ReadReg(inst.i.rs) == ReadReg(inst.i.rt));
|
|
if (branch)
|
|
Branch(g_state.regs.pc + (inst.i.imm_sext32() << 2));
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::bne:
|
|
{
|
|
g_state.next_instruction_is_branch_delay_slot = true;
|
|
const bool branch = (ReadReg(inst.i.rs) != ReadReg(inst.i.rt));
|
|
if (branch)
|
|
Branch(g_state.regs.pc + (inst.i.imm_sext32() << 2));
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::bgtz:
|
|
{
|
|
g_state.next_instruction_is_branch_delay_slot = true;
|
|
const bool branch = (static_cast<s32>(ReadReg(inst.i.rs)) > 0);
|
|
if (branch)
|
|
Branch(g_state.regs.pc + (inst.i.imm_sext32() << 2));
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::blez:
|
|
{
|
|
g_state.next_instruction_is_branch_delay_slot = true;
|
|
const bool branch = (static_cast<s32>(ReadReg(inst.i.rs)) <= 0);
|
|
if (branch)
|
|
Branch(g_state.regs.pc + (inst.i.imm_sext32() << 2));
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::b:
|
|
{
|
|
g_state.next_instruction_is_branch_delay_slot = true;
|
|
const u8 rt = static_cast<u8>(inst.i.rt.GetValue());
|
|
|
|
// bgez is the inverse of bltz, so simply do ltz and xor the result
|
|
const bool bgez = ConvertToBoolUnchecked(rt & u8(1));
|
|
const bool branch = (static_cast<s32>(ReadReg(inst.i.rs)) < 0) ^ bgez;
|
|
|
|
// register is still linked even if the branch isn't taken
|
|
const bool link = (rt & u8(0x1E)) == u8(0x10);
|
|
if (link)
|
|
WriteReg(Reg::ra, g_state.regs.npc);
|
|
|
|
if (branch)
|
|
Branch(g_state.regs.pc + (inst.i.imm_sext32() << 2));
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::cop0:
|
|
{
|
|
if (InUserMode() && !g_state.cop0_regs.sr.CU0)
|
|
{
|
|
Log_WarningPrintf("Coprocessor 0 not present in user mode");
|
|
RaiseException(Exception::CpU);
|
|
return;
|
|
}
|
|
|
|
if (inst.cop.IsCommonInstruction())
|
|
{
|
|
switch (inst.cop.CommonOp())
|
|
{
|
|
case CopCommonInstruction::mfcn:
|
|
{
|
|
const u32 value = ReadCop0Reg(static_cast<Cop0Reg>(inst.r.rd.GetValue()));
|
|
|
|
if constexpr (pgxp_mode == PGXPMode::CPU)
|
|
PGXP::CPU_MFC0(inst.bits, value);
|
|
|
|
WriteRegDelayed(inst.r.rt, value);
|
|
}
|
|
break;
|
|
|
|
case CopCommonInstruction::mtcn:
|
|
{
|
|
WriteCop0Reg(static_cast<Cop0Reg>(inst.r.rd.GetValue()), ReadReg(inst.r.rt));
|
|
|
|
if constexpr (pgxp_mode == PGXPMode::CPU)
|
|
PGXP::CPU_MTC0(inst.bits, ReadCop0Reg(static_cast<Cop0Reg>(inst.r.rd.GetValue())), ReadReg(inst.i.rt));
|
|
}
|
|
break;
|
|
|
|
default:
|
|
Log_ErrorPrintf("Unhandled instruction at %08X: %08X", g_state.current_instruction_pc, inst.bits);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (inst.cop.Cop0Op())
|
|
{
|
|
case Cop0Instruction::rfe:
|
|
{
|
|
// restore mode
|
|
g_state.cop0_regs.sr.mode_bits =
|
|
(g_state.cop0_regs.sr.mode_bits & UINT32_C(0b110000)) | (g_state.cop0_regs.sr.mode_bits >> 2);
|
|
CheckForPendingInterrupt();
|
|
}
|
|
break;
|
|
|
|
case Cop0Instruction::tlbr:
|
|
case Cop0Instruction::tlbwi:
|
|
case Cop0Instruction::tlbwr:
|
|
case Cop0Instruction::tlbp:
|
|
RaiseException(Exception::RI);
|
|
break;
|
|
|
|
default:
|
|
Log_ErrorPrintf("Unhandled instruction at %08X: %08X", g_state.current_instruction_pc, inst.bits);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::cop2:
|
|
{
|
|
if (!g_state.cop0_regs.sr.CE2)
|
|
{
|
|
Log_WarningPrintf("Coprocessor 2 not enabled");
|
|
RaiseException(Exception::CpU);
|
|
return;
|
|
}
|
|
|
|
StallUntilGTEComplete();
|
|
|
|
if (inst.cop.IsCommonInstruction())
|
|
{
|
|
// TODO: Combine with cop0.
|
|
switch (inst.cop.CommonOp())
|
|
{
|
|
case CopCommonInstruction::cfcn:
|
|
{
|
|
const u32 value = GTE::ReadRegister(static_cast<u32>(inst.r.rd.GetValue()) + 32);
|
|
WriteRegDelayed(inst.r.rt, value);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_CFC2(inst.bits, value, value);
|
|
}
|
|
break;
|
|
|
|
case CopCommonInstruction::ctcn:
|
|
{
|
|
const u32 value = ReadReg(inst.r.rt);
|
|
GTE::WriteRegister(static_cast<u32>(inst.r.rd.GetValue()) + 32, value);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_CTC2(inst.bits, value, value);
|
|
}
|
|
break;
|
|
|
|
case CopCommonInstruction::mfcn:
|
|
{
|
|
const u32 value = GTE::ReadRegister(static_cast<u32>(inst.r.rd.GetValue()));
|
|
WriteRegDelayed(inst.r.rt, value);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_MFC2(inst.bits, value, value);
|
|
}
|
|
break;
|
|
|
|
case CopCommonInstruction::mtcn:
|
|
{
|
|
const u32 value = ReadReg(inst.r.rt);
|
|
GTE::WriteRegister(static_cast<u32>(inst.r.rd.GetValue()), value);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_MTC2(inst.bits, value, value);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
Log_ErrorPrintf("Unhandled instruction at %08X: %08X", g_state.current_instruction_pc, inst.bits);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
GTE::ExecuteInstruction(inst.bits);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::lwc2:
|
|
{
|
|
if (!g_state.cop0_regs.sr.CE2)
|
|
{
|
|
Log_WarningPrintf("Coprocessor 2 not enabled");
|
|
RaiseException(Exception::CpU);
|
|
return;
|
|
}
|
|
|
|
const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32();
|
|
u32 value;
|
|
if (!ReadMemoryWord(addr, &value))
|
|
return;
|
|
|
|
StallUntilGTEComplete();
|
|
GTE::WriteRegister(ZeroExtend32(static_cast<u8>(inst.i.rt.GetValue())), value);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_LWC2(inst.bits, value, addr);
|
|
}
|
|
break;
|
|
|
|
case InstructionOp::swc2:
|
|
{
|
|
if (!g_state.cop0_regs.sr.CE2)
|
|
{
|
|
Log_WarningPrintf("Coprocessor 2 not enabled");
|
|
RaiseException(Exception::CpU);
|
|
return;
|
|
}
|
|
|
|
StallUntilGTEComplete();
|
|
|
|
const VirtualMemoryAddress addr = ReadReg(inst.i.rs) + inst.i.imm_sext32();
|
|
const u32 value = GTE::ReadRegister(ZeroExtend32(static_cast<u8>(inst.i.rt.GetValue())));
|
|
WriteMemoryWord(addr, value);
|
|
|
|
if constexpr (pgxp_mode >= PGXPMode::Memory)
|
|
PGXP::CPU_SWC2(inst.bits, value, addr);
|
|
}
|
|
break;
|
|
|
|
// swc0/lwc0/cop1/cop3 are essentially no-ops
|
|
case InstructionOp::cop1:
|
|
case InstructionOp::cop3:
|
|
case InstructionOp::lwc0:
|
|
case InstructionOp::lwc1:
|
|
case InstructionOp::lwc3:
|
|
case InstructionOp::swc0:
|
|
case InstructionOp::swc1:
|
|
case InstructionOp::swc3:
|
|
{
|
|
}
|
|
break;
|
|
|
|
// everything else is reserved/invalid
|
|
default:
|
|
{
|
|
u32 ram_value;
|
|
if (SafeReadInstruction(g_state.current_instruction_pc, &ram_value) &&
|
|
ram_value != g_state.current_instruction.bits)
|
|
{
|
|
Log_ErrorPrintf("Stale icache at 0x%08X - ICache: %08X RAM: %08X", g_state.current_instruction_pc,
|
|
g_state.current_instruction.bits, ram_value);
|
|
g_state.current_instruction.bits = ram_value;
|
|
goto restart_instruction;
|
|
}
|
|
|
|
RaiseException(Exception::RI);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void DispatchInterrupt()
|
|
{
|
|
// If the instruction we're about to execute is a GTE instruction, delay dispatching the interrupt until the next
|
|
// instruction. For some reason, if we don't do this, we end up with incorrectly sorted polygons and flickering..
|
|
SafeReadInstruction(g_state.regs.pc, &g_state.next_instruction.bits);
|
|
if (g_state.next_instruction.op == InstructionOp::cop2 && !g_state.next_instruction.cop.IsCommonInstruction())
|
|
{
|
|
StallUntilGTEComplete();
|
|
GTE::ExecuteInstruction(g_state.next_instruction.bits);
|
|
}
|
|
|
|
// Interrupt raising occurs before the start of the instruction.
|
|
RaiseException(
|
|
Cop0Registers::CAUSE::MakeValueForException(Exception::INT, g_state.next_instruction_is_branch_delay_slot,
|
|
g_state.branch_was_taken, g_state.next_instruction.cop.cop_n),
|
|
g_state.regs.pc);
|
|
}
|
|
|
|
void UpdateDebugDispatcherFlag()
|
|
{
|
|
const bool has_any_breakpoints = !s_breakpoints.empty();
|
|
|
|
// TODO: cop0 breakpoints
|
|
const auto& dcic = g_state.cop0_regs.dcic;
|
|
const bool has_cop0_breakpoints =
|
|
dcic.super_master_enable_1 && dcic.super_master_enable_2 && dcic.execution_breakpoint_enable;
|
|
|
|
const bool use_debug_dispatcher = has_any_breakpoints || has_cop0_breakpoints || s_trace_to_log;
|
|
if (use_debug_dispatcher == g_state.use_debug_dispatcher)
|
|
return;
|
|
|
|
Log_DevPrintf("%s debug dispatcher", use_debug_dispatcher ? "Now using" : "No longer using");
|
|
g_state.use_debug_dispatcher = use_debug_dispatcher;
|
|
ForceDispatcherExit();
|
|
}
|
|
|
|
void ForceDispatcherExit()
|
|
{
|
|
// zero the downcount so we break out and switch
|
|
g_state.downcount = 0;
|
|
g_state.frame_done = true;
|
|
}
|
|
|
|
bool HasAnyBreakpoints()
|
|
{
|
|
return !s_breakpoints.empty();
|
|
}
|
|
|
|
bool HasBreakpointAtAddress(VirtualMemoryAddress address)
|
|
{
|
|
for (const Breakpoint& bp : s_breakpoints)
|
|
{
|
|
if (bp.address == address)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
BreakpointList GetBreakpointList(bool include_auto_clear, bool include_callbacks)
|
|
{
|
|
BreakpointList bps;
|
|
bps.reserve(s_breakpoints.size());
|
|
|
|
for (const Breakpoint& bp : s_breakpoints)
|
|
{
|
|
if (bp.callback && !include_callbacks)
|
|
continue;
|
|
if (bp.auto_clear && !include_auto_clear)
|
|
continue;
|
|
|
|
bps.push_back(bp);
|
|
}
|
|
|
|
return bps;
|
|
}
|
|
|
|
bool AddBreakpoint(VirtualMemoryAddress address, bool auto_clear, bool enabled)
|
|
{
|
|
if (HasBreakpointAtAddress(address))
|
|
return false;
|
|
|
|
Log_InfoPrintf("Adding breakpoint at %08X, auto clear = %u", address, static_cast<unsigned>(auto_clear));
|
|
|
|
Breakpoint bp{address, nullptr, auto_clear ? 0 : s_breakpoint_counter++, 0, auto_clear, enabled};
|
|
s_breakpoints.push_back(std::move(bp));
|
|
UpdateDebugDispatcherFlag();
|
|
|
|
if (!auto_clear)
|
|
{
|
|
g_host_interface->ReportFormattedDebuggerMessage(
|
|
g_host_interface->TranslateString("DebuggerMessage", "Added breakpoint at 0x%08X."), address);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AddBreakpointWithCallback(VirtualMemoryAddress address, BreakpointCallback callback)
|
|
{
|
|
if (HasBreakpointAtAddress(address))
|
|
return false;
|
|
|
|
Log_InfoPrintf("Adding breakpoint with callback at %08X", address);
|
|
|
|
Breakpoint bp{address, callback, 0, 0, false, true};
|
|
s_breakpoints.push_back(std::move(bp));
|
|
UpdateDebugDispatcherFlag();
|
|
return true;
|
|
}
|
|
|
|
bool RemoveBreakpoint(VirtualMemoryAddress address)
|
|
{
|
|
auto it = std::find_if(s_breakpoints.begin(), s_breakpoints.end(),
|
|
[address](const Breakpoint& bp) { return bp.address == address; });
|
|
if (it == s_breakpoints.end())
|
|
return false;
|
|
|
|
g_host_interface->ReportFormattedDebuggerMessage(
|
|
g_host_interface->TranslateString("DebuggerMessage", "Removed breakpoint at 0x%08X."), address);
|
|
|
|
s_breakpoints.erase(it);
|
|
UpdateDebugDispatcherFlag();
|
|
|
|
if (address == s_last_breakpoint_check_pc)
|
|
s_last_breakpoint_check_pc = INVALID_BREAKPOINT_PC;
|
|
|
|
return true;
|
|
}
|
|
|
|
void ClearBreakpoints()
|
|
{
|
|
s_breakpoints.clear();
|
|
s_breakpoint_counter = 0;
|
|
s_last_breakpoint_check_pc = INVALID_BREAKPOINT_PC;
|
|
UpdateDebugDispatcherFlag();
|
|
}
|
|
|
|
bool AddStepOverBreakpoint()
|
|
{
|
|
u32 bp_pc = g_state.regs.pc;
|
|
|
|
Instruction inst;
|
|
if (!SafeReadInstruction(bp_pc, &inst.bits))
|
|
return false;
|
|
|
|
bp_pc += sizeof(Instruction);
|
|
|
|
if (!IsCallInstruction(inst))
|
|
{
|
|
g_host_interface->ReportFormattedDebuggerMessage(
|
|
g_host_interface->TranslateString("DebuggerMessage", "0x%08X is not a call instruction."), g_state.regs.pc);
|
|
return false;
|
|
}
|
|
|
|
if (!SafeReadInstruction(bp_pc, &inst.bits))
|
|
return false;
|
|
|
|
if (IsBranchInstruction(inst))
|
|
{
|
|
g_host_interface->ReportFormattedDebuggerMessage(
|
|
g_host_interface->TranslateString("DebuggerMessage", "Can't step over double branch at 0x%08X"), g_state.regs.pc);
|
|
return false;
|
|
}
|
|
|
|
// skip the delay slot
|
|
bp_pc += sizeof(Instruction);
|
|
|
|
g_host_interface->ReportFormattedDebuggerMessage(
|
|
g_host_interface->TranslateString("DebuggerMessage", "Stepping over to 0x%08X."), bp_pc);
|
|
|
|
return AddBreakpoint(bp_pc, true);
|
|
}
|
|
|
|
bool AddStepOutBreakpoint(u32 max_instructions_to_search)
|
|
{
|
|
// find the branch-to-ra instruction.
|
|
u32 ret_pc = g_state.regs.pc;
|
|
for (u32 i = 0; i < max_instructions_to_search; i++)
|
|
{
|
|
ret_pc += sizeof(Instruction);
|
|
|
|
Instruction inst;
|
|
if (!SafeReadInstruction(ret_pc, &inst.bits))
|
|
{
|
|
g_host_interface->ReportFormattedDebuggerMessage(
|
|
g_host_interface->TranslateString("DebuggerMessage",
|
|
"Instruction read failed at %08X while searching for function end."),
|
|
ret_pc);
|
|
return false;
|
|
}
|
|
|
|
if (IsReturnInstruction(inst))
|
|
{
|
|
g_host_interface->ReportFormattedDebuggerMessage(
|
|
g_host_interface->TranslateString("DebuggerMessage", "Stepping out to 0x%08X."), ret_pc);
|
|
|
|
return AddBreakpoint(ret_pc, true);
|
|
}
|
|
}
|
|
|
|
g_host_interface->ReportFormattedDebuggerMessage(
|
|
g_host_interface->TranslateString("DebuggerMessage",
|
|
"No return instruction found after %u instructions for step-out at %08X."),
|
|
max_instructions_to_search, g_state.regs.pc);
|
|
|
|
return false;
|
|
}
|
|
|
|
ALWAYS_INLINE_RELEASE static bool BreakpointCheck()
|
|
{
|
|
const u32 pc = g_state.regs.pc;
|
|
|
|
// single step - we want to break out after this instruction, so set a pending exit
|
|
// the bp check happens just before execution, so this is fine
|
|
if (s_single_step)
|
|
{
|
|
ForceDispatcherExit();
|
|
s_single_step = false;
|
|
s_last_breakpoint_check_pc = pc;
|
|
return false;
|
|
}
|
|
|
|
if (pc == s_last_breakpoint_check_pc)
|
|
{
|
|
// we don't want to trigger the same breakpoint which just paused us repeatedly.
|
|
return false;
|
|
}
|
|
|
|
u32 count = static_cast<u32>(s_breakpoints.size());
|
|
for (u32 i = 0; i < count;)
|
|
{
|
|
Breakpoint& bp = s_breakpoints[i];
|
|
if (!bp.enabled || bp.address != pc)
|
|
{
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
bp.hit_count++;
|
|
|
|
if (bp.callback)
|
|
{
|
|
// if callback returns false, the bp is no longer recorded
|
|
if (!bp.callback(pc))
|
|
{
|
|
s_breakpoints.erase(s_breakpoints.begin() + i);
|
|
count--;
|
|
UpdateDebugDispatcherFlag();
|
|
}
|
|
else
|
|
{
|
|
i++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
g_host_interface->PauseSystem(true);
|
|
|
|
if (bp.auto_clear)
|
|
{
|
|
g_host_interface->ReportFormattedDebuggerMessage("Stopped execution at 0x%08X.", pc);
|
|
s_breakpoints.erase(s_breakpoints.begin() + i);
|
|
count--;
|
|
UpdateDebugDispatcherFlag();
|
|
}
|
|
else
|
|
{
|
|
g_host_interface->ReportFormattedDebuggerMessage("Hit breakpoint %u at 0x%08X.", bp.number, pc);
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
s_last_breakpoint_check_pc = pc;
|
|
return System::IsPaused();
|
|
}
|
|
|
|
template<PGXPMode pgxp_mode, bool debug>
|
|
static void ExecuteImpl()
|
|
{
|
|
g_using_interpreter = true;
|
|
g_state.frame_done = false;
|
|
while (!g_state.frame_done)
|
|
{
|
|
TimingEvents::UpdateCPUDowncount();
|
|
|
|
while (g_state.pending_ticks < g_state.downcount)
|
|
{
|
|
if (HasPendingInterrupt() && !g_state.interrupt_delay)
|
|
DispatchInterrupt();
|
|
|
|
if constexpr (debug)
|
|
{
|
|
Cop0ExecutionBreakpointCheck();
|
|
|
|
if (BreakpointCheck())
|
|
{
|
|
// continue is measurably faster than break on msvc for some reason
|
|
continue;
|
|
}
|
|
}
|
|
|
|
g_state.interrupt_delay = false;
|
|
g_state.pending_ticks++;
|
|
|
|
// now executing the instruction we previously fetched
|
|
g_state.current_instruction.bits = g_state.next_instruction.bits;
|
|
g_state.current_instruction_pc = g_state.regs.pc;
|
|
g_state.current_instruction_in_branch_delay_slot = g_state.next_instruction_is_branch_delay_slot;
|
|
g_state.current_instruction_was_branch_taken = g_state.branch_was_taken;
|
|
g_state.next_instruction_is_branch_delay_slot = false;
|
|
g_state.branch_was_taken = false;
|
|
g_state.exception_raised = false;
|
|
|
|
// fetch the next instruction - even if this fails, it'll still refetch on the flush so we can continue
|
|
if (!FetchInstruction())
|
|
continue;
|
|
|
|
// trace functionality
|
|
if constexpr (debug)
|
|
{
|
|
if (s_trace_to_log)
|
|
LogInstruction(g_state.current_instruction.bits, g_state.current_instruction_pc, &g_state.regs);
|
|
}
|
|
|
|
#if 0 // GTE flag test debugging
|
|
if (g_state.m_current_instruction_pc == 0x8002cdf4)
|
|
{
|
|
if (g_state.m_regs.v1 != g_state.m_regs.v0)
|
|
printf("Got %08X Expected? %08X\n", g_state.m_regs.v1, g_state.m_regs.v0);
|
|
}
|
|
#endif
|
|
|
|
// execute the instruction we previously fetched
|
|
ExecuteInstruction<pgxp_mode, debug>();
|
|
|
|
// next load delay
|
|
UpdateLoadDelay();
|
|
}
|
|
|
|
TimingEvents::RunEvents();
|
|
}
|
|
}
|
|
|
|
void Execute()
|
|
{
|
|
if (g_settings.gpu_pgxp_enable)
|
|
{
|
|
if (g_settings.gpu_pgxp_cpu)
|
|
ExecuteImpl<PGXPMode::CPU, false>();
|
|
else
|
|
ExecuteImpl<PGXPMode::Memory, false>();
|
|
}
|
|
else
|
|
{
|
|
ExecuteImpl<PGXPMode::Disabled, false>();
|
|
}
|
|
}
|
|
|
|
void ExecuteDebug()
|
|
{
|
|
if (g_settings.gpu_pgxp_enable)
|
|
{
|
|
if (g_settings.gpu_pgxp_cpu)
|
|
ExecuteImpl<PGXPMode::CPU, true>();
|
|
else
|
|
ExecuteImpl<PGXPMode::Memory, true>();
|
|
}
|
|
else
|
|
{
|
|
ExecuteImpl<PGXPMode::Disabled, true>();
|
|
}
|
|
}
|
|
|
|
void SingleStep()
|
|
{
|
|
s_single_step = true;
|
|
ExecuteDebug();
|
|
g_host_interface->ReportFormattedDebuggerMessage("Stepped to 0x%08X.", g_state.regs.pc);
|
|
}
|
|
|
|
namespace CodeCache {
|
|
|
|
template<PGXPMode pgxp_mode>
|
|
void InterpretCachedBlock(const CodeBlock& block)
|
|
{
|
|
// set up the state so we've already fetched the instruction
|
|
DebugAssert(g_state.regs.pc == block.GetPC());
|
|
g_state.regs.npc = block.GetPC() + 4;
|
|
|
|
for (const CodeBlockInstruction& cbi : block.instructions)
|
|
{
|
|
g_state.pending_ticks++;
|
|
|
|
// now executing the instruction we previously fetched
|
|
g_state.current_instruction.bits = cbi.instruction.bits;
|
|
g_state.current_instruction_pc = cbi.pc;
|
|
g_state.current_instruction_in_branch_delay_slot = cbi.is_branch_delay_slot;
|
|
g_state.current_instruction_was_branch_taken = g_state.branch_was_taken;
|
|
g_state.branch_was_taken = false;
|
|
g_state.exception_raised = false;
|
|
|
|
// update pc
|
|
g_state.regs.pc = g_state.regs.npc;
|
|
g_state.regs.npc += 4;
|
|
|
|
// execute the instruction we previously fetched
|
|
ExecuteInstruction<pgxp_mode, false>();
|
|
|
|
// next load delay
|
|
UpdateLoadDelay();
|
|
|
|
if (g_state.exception_raised)
|
|
break;
|
|
}
|
|
|
|
// cleanup so the interpreter can kick in if needed
|
|
g_state.next_instruction_is_branch_delay_slot = false;
|
|
}
|
|
|
|
template void InterpretCachedBlock<PGXPMode::Disabled>(const CodeBlock& block);
|
|
template void InterpretCachedBlock<PGXPMode::Memory>(const CodeBlock& block);
|
|
template void InterpretCachedBlock<PGXPMode::CPU>(const CodeBlock& block);
|
|
|
|
template<PGXPMode pgxp_mode>
|
|
void InterpretUncachedBlock()
|
|
{
|
|
g_state.regs.npc = g_state.regs.pc;
|
|
if (!FetchInstructionForInterpreterFallback())
|
|
return;
|
|
|
|
// At this point, pc contains the last address executed (in the previous block). The instruction has not been fetched
|
|
// yet. pc shouldn't be updated until the fetch occurs, that way the exception occurs in the delay slot.
|
|
bool in_branch_delay_slot = false;
|
|
for (;;)
|
|
{
|
|
g_state.pending_ticks++;
|
|
|
|
// now executing the instruction we previously fetched
|
|
g_state.current_instruction.bits = g_state.next_instruction.bits;
|
|
g_state.current_instruction_pc = g_state.regs.pc;
|
|
g_state.current_instruction_in_branch_delay_slot = g_state.next_instruction_is_branch_delay_slot;
|
|
g_state.current_instruction_was_branch_taken = g_state.branch_was_taken;
|
|
g_state.next_instruction_is_branch_delay_slot = false;
|
|
g_state.branch_was_taken = false;
|
|
g_state.exception_raised = false;
|
|
|
|
// Fetch the next instruction, except if we're in a branch delay slot. The "fetch" is done in the next block.
|
|
const bool branch = IsBranchInstruction(g_state.current_instruction);
|
|
if (!g_state.current_instruction_in_branch_delay_slot || branch)
|
|
{
|
|
if (!FetchInstructionForInterpreterFallback())
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
g_state.regs.pc = g_state.regs.npc;
|
|
}
|
|
|
|
// execute the instruction we previously fetched
|
|
ExecuteInstruction<pgxp_mode, false>();
|
|
|
|
// next load delay
|
|
UpdateLoadDelay();
|
|
|
|
if (g_state.exception_raised || (!branch && in_branch_delay_slot) ||
|
|
IsExitBlockInstruction(g_state.current_instruction))
|
|
{
|
|
break;
|
|
}
|
|
|
|
in_branch_delay_slot = branch;
|
|
}
|
|
}
|
|
|
|
template void InterpretUncachedBlock<PGXPMode::Disabled>();
|
|
template void InterpretUncachedBlock<PGXPMode::Memory>();
|
|
template void InterpretUncachedBlock<PGXPMode::CPU>();
|
|
|
|
} // namespace CodeCache
|
|
|
|
namespace Recompiler::Thunks {
|
|
|
|
bool InterpretInstruction()
|
|
{
|
|
ExecuteInstruction<PGXPMode::Disabled, false>();
|
|
return g_state.exception_raised;
|
|
}
|
|
|
|
bool InterpretInstructionPGXP()
|
|
{
|
|
ExecuteInstruction<PGXPMode::Memory, false>();
|
|
return g_state.exception_raised;
|
|
}
|
|
|
|
} // namespace Recompiler::Thunks
|
|
|
|
} // namespace CPU
|