**Note:** This is a quite technical document intended for those that are interested in compiling ES-DE from source code, or would like to customize the configuration. If you just want to start using the software, check out the [User guide](USERGUIDE.md) instead.
ES-DE is developed and compiled using Clang/LLVM and GCC on Unix, Clang/LLVM on macOS and MSVC and GCC (MinGW) on Windows.
CMake is the build system for all the supported operating systems, used in conjunction with `make` on Unix and macOS and `nmake` and `make` on Windows. Xcode on macOS or Visual Studio on Windows are not required for building ES-DE and they have not been used during the development.
The code has some dependencies. For building, you'll need CMake and development packages for cURL, FreeImage, FreeType, libVLC, pugixml, SDL2 and RapidJSON.
First add the RPM Fusion repository which is required for VLC. Go to [https://rpmfusion.org/Configuration](https://rpmfusion.org/Configuration) and download the .rpm package for the free repository, then install it such as this:
NetBSD ships with GCC by default, and although you should be able to install and use Clang/LLVM, it's probably easier to just stick to the default compiler environment.
RapidJSON is not part of the OpenBSD ports/package collection as of v6.8, so you need to compile it yourself. At the time of writing, the latest release v1.1.0 does not compile on OpenBSD, so you need to use the master branch:
Note that you can also profile either a normal build or a debug build, but it's normally recommended to use the profiling build as it's compiled with optimizations while retaining the debug symbols. But if you need to alternate between Valgrind and the normal debugger the optimizations can be very annoying and therefore a normal debug build could be recommended in that instance.
Another useful tool is `scan-build`, assuming you use Clang/LLVM. This is a static analyzer that runs during compilation to provide a very helpful HTML report of potential bugs (well it should be actual bugs but some false positives could be included). You need to run it for both the cmake and make steps, here's an example:
You open the report with the `scan-view` command which lets you browse it using your web browser. Note that the compilation time is much higher when using the static analyzer compared to a normal compilation. As well this tool generates a lot of extra files and folders in the build tree, so it may make sense to run it in a separate copy of the source folder to avoid having to clean up all this extra data when the analysis has been completed.
Note that the GLES renderer is quite limited as there is no shader support for it, so ES-DE will definitely not look as pretty as when using the default OpenGL renderer.
Running multiple compile jobs in parallel is a good thing as it speeds up the build time a lot (scaling almost linearly). Here's an example telling make to run 6 parallel jobs:
It's important to know that this is not only the directory used by the install script, the CMAKE_INSTALL_PREFIX variable also modifies code inside ES-DE used to locate the required program resources. So it's necessary that the install prefix corresponds to the location where the application will actually be installed.
This Clang debug build is LLVM "native", i.e. intended to be debugged using the LLVM project debugger LLDB. The problem is that this is still not well integrated with VSCode that I use for development so I need to keep using GDB. But this is problematic as the libstd++ data required by GDB is missing in the binary, making it impossible to see the values of for instance std::string variables.
It's possible to activate the additional debug info needed by GDB by using the flag `-D_GLIBCXX_DEBUG`. I've added this to CMakeLists.txt when using Clang, but this bloats the binary and makes the code much slower. Actually, instead of a 4% faster application startup, it's now 36% slower! The same goes for the binary size, instead of 17% smaller it's now 17% larger.
I'm expecting this to be resolved in the near future though, and as I think Clang is an interesting compiler, I use it as the default when working on the project (I sometimes test with GCC to make sure that it still builds the software correctly).
Be aware that if using the GNOME desktop environment, /usr/local/share/pixmaps/emulationstation.svg must exist in order for the ES-DE icon to be shown in the Dash and task switcher.
The home directory will always take precedence, and any resources or themes located there will override the ones in the installation path or in the path of the ES-DE executable.
EmulationStation for macOS is built using Clang/LLVM which is the default compiler for this operating system. It's pretty straightforward to build software on this OS. The main deficiency is that there is no native package manager, but as there are several third party package managers available, this can be partly compensated for. The use of one of them, [Homebrew](https://brew.sh), is detailed below.
As for code editing, I use [VSCode](https://code.visualstudio.com). I suppose Xcode could be used instead but I have no experience with this tool and no interest in it as I want to use the same tools for all the operating systems that I develop on.
Install the Command Line Tools which include Clang/LLVM, Git, make etc. Simply open a terminal and enter the command `clang`. This will open a dialog that will let you download and install the tools.
Following this, install the Homebrew package manager which will simplify the rest of the installation greatly. Install it by runing the following in a terminal window:
Enable developer mode to avoid annoying password requests when attaching the debugger to a process:
```
sudo /usr/sbin/DevToolsSecurity --enable
```
It makes me wonder who designed this functionality and what was their thinking, but a simple command is enough to not having to ponder this any further.
If required, define SDKROOT. This is only needed if during compilation you get error messages regarding missing include files. Running the following will properly setup the development environment paths:
After building ES-DE and trying to execute the application, there could be issues with finding the dynamic link libraries for VLC as these are not installed into a standard location but rather into the /Applications folder. As such, you may need to set the DYLD_LIBRARY_PATH environmental variable to find the VLC libraries. Note that this is not intended or required for the release build that will be shipped in a DMG installer or if you manually install ES-DE using 'make install'. It's only needed to be able to run the binary from the build directory. The following will of course only be active during your session, and you need to set the variable for each terminal window that you want to start ES-DE from, unless you add it to your shell profile file:
**Note:** According to the SDL documentation, there could be issues with attempting to run ES-DE from the build directory when using a High DPI display as the required NSHighResolutionCapable key is not set as there is no Info.plist file available. In this case, doing a 'make install' and running from the installation folder would solve the problem. I've been unable to verify if this is really required though.
As macOS does not have any package manager which would have handled the library dependencies, we need to bundle the required shared libraries with the application. Copy the following .dylib files from their respective installation directories to the emulationstation-de build directory:
For libfreetype there is a dependency on libpng and you need to rewrite the rpath to point to the local directory, otherwise any generated installation package will not work on other computers. Make sure that you have write permissions to libfreetype.6.dylib before attempting to run this:
In addition to these libraries, you need to create a `plugins` directory and copy over the following VLC libraries, which are normally located in `/Applications/VLC.app/Contents/MacOS/plugins/`:
If you only want to build ES-DE to be used on your own computer, there's the option to skip the entire bundling of the libraries and use the ones already installed using Homebrew, meaning you can skip the previous .dylib copying. To do so, run CMake with the following option:
This also affects the .dmg package generation using cpack, so if this option is enabled, the package will be unusable for anyone but yourself as the required libraries will not be bundled with the application.
A theme is not mandatory to start the application, but ES will be basically useless without it.
The home directory will always take precedence, and any resources or themes located there will override the ones in the installation path or in the path of the ES executable.
Generating .dmg installers on older version of macOS seems to make them forward compatible to a pretty good extent, for instance building on El Capitan seems to generate an application that is usable on Catalina and Big Sur. The other way around does however not seem to be true, which is quite unsurprising.
Even after considerable effort I've been unable to make CMake natively set correct rpaths for the EmulationStation binary on macOS. Therefore a hack/workaround is in place that uses install_name_tool to change absolute paths to rpaths for most of the bundled libraries.
This is certainly not perfect as the versions of the libraries are hardcoded inside es-app/CMakeLists.txt. Therefore always check that all the rpaths are set correctly if you intend to create a .dmg image that will be used on other computers than your own.
Simply run `otool -L EmulationStation` and verify that the result looks something like this:
If any of the lines that should start with @rpath instead has an absolute path, then you have a problem and need to modify the install_name_tools parameters in es-app/CMakeLists.txt.
As much as I would like to exclude support for MSVC, this proprietary compiler simply works much better when developing as it's much faster than MinGW when linking debug builds and when actually debugging. For release builds though MinGW is very fast and it seems as if ES-DE starts around 18% faster when built with MinGW so this compiler probably generates more efficient code overall. As well MSVC requires a lot more junk DLL files to be distributed with the application so it's not a good candidate for the final release build.
It seems as if Microsoft has dropped support for installing the Build Tools without the Visual Studio IDE, at least I've been unable to find a way to exclude it. But I just pretend it's not installed and use VSCode instead which works perfectly fine.
During installation, choose the Desktop development with C++ workload with the following options (version details excluded):
```
MSVC and x64/x86 build tools
Windows 10 SDK
Just-In-Time debugger
C++ CMake tools for Windows
```
If you intend to use both MinGW and MSVC on the machine, it's probably better to exclude CMake and install it manually as described in the MinGW setup instructions below.
The way the MSVC environment works is that a specific developer shell is provided where the build environment is properly configured. You open this from the Start menu via `Visual Studio 2019` -> `Visual Studio tools` -> `VC` -> `x64 Native Tools Command Prompt for VS 2019`.
It's very important to choose the x64-specific shell and not the x86 variant, as ES-DE will only compile as a 64-bit application.
Note that most GDB builds for Windows have broken Python support so that pretty printing won't work. The recommended MinGW installation should work fine though.
Configure Git. I won't get into the details on how it's done, but there are many resources available online to support with this. The `Git Bash` shell shipped with Git for Windows is very useful though as it's somewhat reproducing a Unix environment using MinGW/MSYS2.
It's strongly recommended to set line breaks to Unix-style (line feed only) directly in the editor, although it can also be configured in Git for conversion during commits. The source code for ES-DE only uses Unix-style line breaks.
In the description below it's assumed that all build steps for MinGW/GCC will be done in the Git Bash shell, and all the build steps for MSVC will be done in the MSVC developer console (x64 Native Tools Command Prompt for VS).
If using MinGW, this library needs to be compiled from source as the pre-built libraries don't seem to work with GCC. The GitHub repo seems to be somewhat broken as well, therefore the manual download is required. It's recommended to get the source in zip format and uncompress it to the same directory as the other libraries listed above.
Copy the files to the `emulationstation-de` build directory. Most of them will come from the packages that were provided in the previous steps of this guide.
libcrypto-1_1-x64.dll (from the OpenSSL package, located in Git MinGW/MSYS2 under \mingw64\bin)
libssl-1_1-x64.dll (from the OpenSSL package, located in Git MinGW under \mingw64\bin)
libvlc.dll
libvlccore.dll
pugixml.dll
pugixml.lib
SDL2.dll
SDL2.lib
SDL2main.lib
MSVCP140.dll (from Windows\System32)
VCOMP140.DLL (from Windows\System32)
VCRUNTIME140.dll (from Windows\System32)
VCRUNTIME140_1.dll (from Windows\System32)
```
In addition to these files, you need libcurl-x64.lib and libvlc.lib, but these are not available for download so you need to generate them yourself from their corresponding DLL files. Do this inside the respective library directory and not within the emulationstation-de folder.
libcurl-x64.lib:
```
dumpbin /exports libcurl-x64.dll > exports.txt
echo LIBRARY libcurl-x64 > libcurl-x64.def
echo EXPORTS >> libcurl-x64.def
for /f "skip=19 tokens=4" %A in (exports.txt) do echo %A >> libcurl-x64.def
In addition to the files above, you need to copy some libraries from the VLC `plugins` folder to be able to play video files. There is a subdirectory structure under the plugins folder but there is no requirement to retain this as libVLC apparently looks recursively for the .dll files.
It's a bit tricky to know which libraries are really needed. But as the plugins directory is around 120 MB (as of VLC version 3.0.11), we definitely only want to copy the files we need.
There is a bug in libVLC when building using MSVC, so three lines need to be commented out from `libvlc_media.h`. The compiler error messages will provide you with the line numbers, but they involve the callback `libvlc_media_read_cb`.
For some annoying reason MSVC is the only compiler that creates a debug build by default and where you need to explicitly set the build type to Release.
Unfortunately nmake does not support parallel compiles so it's very slow. There are third party solutions to get multi-core building working with MSVC, but I've not investigated this much. Embrace this as a retro experience as in the 1990s we normally just had a single core available in our computers.
Be aware that MSVC links against different VC++ libraries for debug and release builds (e.g. MSVCP140.dll or MSVCP140d.dll), so any NSIS package made from a debug build will not work on computers without the MSVC development environment installed.
For some reason defining the `../include` path doesn't work when running CMake from PowerShell (and no, changing to backslash doesn't help). Instead use Bash, by running from a Git Bash shell.
You run a parallel build using multiple CPU cores with the `-j` flag, for example, `make -j6`.
Note that compilation time is much longer than on Unix or macOS, and linking time is unendurable for a debug build (around 10 times longer on my computer compared to Linux). The debug binary is also much larger than on Unix.
If you are running Windows in a virtualized environment such as QEMU-KVM that does not support HW accelerated OpenGL, you can install the Mesa3D for Windows library, which can be downloaded at [https://fdossena.com/?p=mesa/index.frag](https://fdossena.com/?p=mesa/index.frag).
You simply extract the opengl32.dll file into the ES-DE directory and this will enable the llvmpipe renderer. The performance will be terrible of course, but everything should work and it should be good enough for test building on Windows without having to reboot your computer to a native Windows installation. (Note that you may need to copy opengl32.dll to your RetroArch installation directory as well to get the emulators to work correctly.)
Now run the batch script, ES should start and ask you to configure any attached controllers. Following this, check that everything works as expected, i.e. the gamelists are properly populated etc.
There are some files shipped with ES-DE that need to be pulled from external resources, the first one being the CA certificate bundle to get TLS/SSL support working on Windows.
The CA certificates shipped with ES-DE come directly from the curl project but they're originally supplied by the Mozilla foundation. See [https://wiki.mozilla.org/CA](https://wiki.mozilla.org/CA) for more information about this certificate bundle.
The latest version can be downloaded from [https://curl.se/docs/caextract.html](https://curl.se/docs/caextract.html)
This is a bit tricky as the data needs to be converted to an internal format used by ES-DE. The original file is huge and most of the information is not required.
Go to [https://www.mamedev.org/release.php](https://www.mamedev.org/release.php) and select the Windows version, but only download the driver information in XML format and not MAME itself. This file will be named something like `mame0226lx.zip` and unzipping it will give you a file name such as `mame0226.xml`.
The diff command is used to do a sanity check that the changes look reasonable before deleting the old files. This is an example for the BIOS file when going from driver version 0.221 to 0.226:
The reason to not simply replace the BIOS and devices files with the new version is that we want to retain entries from all older MAME versions as otherwise older ROM sets used on older MAME versions will have missing information. This is so as the MAME project sometimes remove older entries when they're reorganizing the ROM sets. By merging the files we retain backwards compatibility but still support the latest MAME version. To clarify, this of course does not affect the emulation itself, but rather the filtering of BIOS and device files inside ES-DE. The mamenames.xml file containing the translation of MAME ROM names to the full game names does not suffer from this problem as it's cumulative, which is why it is simply overwritten.
ES-DE ships with a comprehensive `es_systems.cfg` configuration file, and as the logic is to use a `%ROMPATH%` variable to locate the ROM files (with a corresponding setting in `es_settings.cfg`), normally you shouldn't need to modify this file to the same extent as previous versions of EmulationStation. Still, see below in this document on how to adjust the es_systems.cfg file if required.
Upon first startup of the application, if there is no es_systems.cfg file present, it will be copied from the template subdirectory inside the resources directory. This directory is located in the installation path of the application, for instance `/usr/local/share/emulationstation/resources/templates` on Unix, `/Applications/EmulationStation Desktop Edition.app/Contents/Resources/resources/templates` on macOS and `C:\Program Files\EmulationStation-DE\resources\templates`on Windows.
Keep in mind that you have to set up your emulators separately from ES-DE as the es_systems.cfg file assumes that your emulator environment is properly configured.
This file will contain all supported settings at their default values. Normally you shouldn't need to modify this file manually, instead you should be able to use the menu inside ES-DE to update all the necessary settings.
This complete configuration step can normally be skipped as you're presented with a dialog to change the ROM directory upon application startup if no game files are found.
By default, ES-DE looks in `~/ROMs` for the ROM files, where they are expected to be grouped into directories corresponding to the game systems, for example:
There is also support to add the variable %ESPATH% to the ROM directory setting, this will expand to the path where the ES executable is started from. You would normally not need this, but the option is there, should you require it for some reason.
You normally don't need to modify this file manually as it's created by the built-in input configuration step. This procedure is detailed in the [User guide](USERGUIDE.md#input-device-configuration).
If your controller and keyboard stop working, you can delete the `~/.emulationstation/es_input.cfg` file to make the input configuration screen re-appear on the next startup, or you can start ES-DE with the `--force-input-config` command line argument.
As you can see above, you can override the home directory path using the `--home` flag. So by running for instance the command `emulationstation --home ~/games/emulation`, ES will use `~/games/emulation/.emulationstation` as its base directory.
The es_systems.cfg file contains the system configuration data for ES-DE, written in XML format. This defines the system name, the full system name, the ROM path, the allowed file extensions, the launch command, the platform (for scraping) and the theme to use.
ES-DE will only check in your home directory for an es_systems.cfg file, for example `~/.emulationstation/es_systems.cfg`, but if this file is not present, it will attempt to install it from the systems template directory as explained earlier in this document.
It doesn't matter in which order you define the systems as they will be sorted by the full system name inside the application, but it's still probably a good idea to add them in alphabetical order to make the file easier to maintain.
Below is an overview of the file layout with various examples. For a real system entry there can of course not be multiple entries for the same tag such as the multiple \<command\> entries listed here.
`%ROMRAW%` - Replaced with the unescaped, absolute path to the selected ROM. If your emulator is picky about paths, you might want to use this instead of %ROM%, but enclosed in quotes.
`%BASENAME%` - Replaced with the "base" name of the path to the selected ROM. For example, a path of `/foo/bar.rom`, this tag would be `bar`. This tag is useful for setting up AdvanceMAME.
`%EMUPATH%` - Replaced with the path to the emulator binary. This is expanded using either the PATH environmental variable of the operating system, or using an absolute emulator path if this has been defined.
`%COREPATH%` - The core file defined after this variable will be searched in each of the directories listed in the setting EmulatorCorePath in es_settings.cfg. This is done until the first match occurs, or until the directories are exhausted and no core file was found. This makes it possible to create a more general es_systems.cfg file but still support the variation between different operating systems and different types of emulator installations (e.g. installed via the OS repository, via Snap, compiled from source etc.). This is primarily intended for Unix using RetroArch but it can also be used on macOS and Windows and for other emulators that utilize discrete emulator cores. For macOS and Windows the EmulatorCorePath setting is blank by default, and for Unix it's set to the following value: `~/.config/retroarch/cores:~/snap/retroarch/current/.config/retroarch/cores:/usr/lib/x86_64-linux-gnu/libretro:/usr/lib64/libretro:/usr/lib/libretro:/usr/local/lib/libretro:/usr/pkg/lib/libretro`. Note that colons are used to separate the directories on Unix and macOS and that semicolons are used on Windows. This path setting can be changed from within the GUI, as described in the [User guide](USERGUIDE.md#other-settings-1). Never use quotation marks around the directories for this setting. It's strongly adviced to not add spaces to directory names, but if still done, ES-DE will handle this automatically by adding the appropriate quotation marks to the launch command. You can also use the %EMUPATH% and %ESPATH% variables within the EmulatorCorePath setting, which leads to quite flexible configuration options.
As of the fork to EmulationStation Desktop Edition, game media information no longer needs to be defined in the gamelist.xml files. Instead the application will look for any media matching the ROM filename. The media path where to look for game media is configurable either manually in `es_settings.cfg` or via the GUI. If configured manually in es_settings.cfg, it looks something like this:
You can use ES-DE's scraping tools to populate the gamelist.xml files, or manually update individual entries using the metadata editor. All of this is explained in the [User guide](USERGUIDE.md).
Everything is enclosed in a `<gameList>` tag, and the information for each game or folder is enclosed in a corresponding `<game>` or `<folder>` tag. Each piece of metadata is encoded as a string.
*`float` - a floating-point decimal value (written as a string)
*`integer` - an integer value (written as a string)
*`datetime` - a date and, potentially, a time. These are encoded as an ISO string, in the following format: "%Y%m%dT%H%M%S%F%q". For example, the release date for Chrono Trigger is encoded as "19950311T000000" (no time specified)
Some metadata is also marked as "statistic" - these are kept track of by ES-DE and do not show up in the metadata editor. They are shown in certain views (for example, the detailed view and the video view both show `lastplayed`, although the label can be disabled by the theme).
*`path` - string, the path to the game file, either relative to the %ROMPATH% variable or as an absolute path on the filesystem
*`name` - string, the displayed name for the game
*`sortname` - string, used in sorting the gamelist in a system, instead of `name`
*`desc` - string, a description of the game, longer descriptions will automatically scroll, so don't worry about the size
*`rating` - float, the rating for the game, expressed as a floating point number between 0 and 1. Fractional values will be rounded to 0.1 increments (half-stars) during processing
*`releasedate` - datetime, the date the game was released, displayed as date only, time is ignored
*`developer` - string, the developer for the game
*`publisher` - string, the publisher for the game
*`genre` - string, the genre(s) for the game
*`players` - integer, the number of players the game supports
*`favorite` - bool, indicates whether the game is a favorite
*`completed` - bool, indicates whether the game has been completed
*`kidgame` - bool, indicates whether the game is suitable for children, as used by the `Kid' UI mode
*`hidden` - bool, indicates whether the game is hidden
*`broken` - bool, indicates a game that doesn't work (useful for MAME)
*`nogamecount` - bool, indicates whether the game should be excluded from the game counter and the automatic and custom collections
*`nomultiscrape` - bool, indicates whether the game should be excluded from the multi-scraper
*`hidemetadata` - bool, indicates whether to hide most of the metadata fields when displaying the game in the gamelist view
*`launchcommand` - string, overrides the emulator and core settings on a per-game basis
*`playcount` - integer, the number of times this game has been played
*`lastplayed` - statistic, datetime, the last date and time this game was played
For folders, most of the fields are identical although some are removed. In the list below, the fields with identical function compared to the game files described above have been left without a description.
* If a value matches the default for a particular piece of metadata, ES-DE will not write it to the gamelist.xml file (for example, if `genre` isn't specified, an empty genre tag will not be written)
* The `folder` metadata will only be used if a game file is found inside that folder, as empty folders will be skipped during startup even if they have metadata values defined for themselves
* ES-DE will keep entries for games and folders that it can't find the game/ROM files for, i.e. it will not clean up the gamelist.xml files automatically when game files are missing
There are numerous locations throughout ES-DE where custom scripts will be executed if the option to do so has been enabled in the settings. You'll find the option on the Main menu under `Other settings`. By default it's deactivated so be sure to enable it to use this feature.
The approach is quite straightforward, ES-DE will look for any files inside a script directory that correspond to the event that is triggered and execute all files located there.
As an example, let's create a log that will record the start and end time for each game we play, letting us see how much time we spend on retro-gaming.
**Note:** The following example is for Unix systems, but it works the same way in macOS (which is also Unix after all), and on Windows (although .bat batch files are then used instead of shell scripts and any spaces in the parameters are not escaped as is the case on Unix).
The events when the game starts and ends are called `game-start` and `game-end` respectively. Finding these event names is easily achieved by starting ES-DE with the `--debug` flag. If this is done, all attempts to execute custom event scripts will be logged to es_log.txt, including the event names.
After creating the directories, we need to create the scripts to log the actual game launch and game ending. The parameters that are passed to the scripts varies depending on the type of event, but for these events the two parameters are the absolute path to the game file, and the game name as shown in the gamelist view.
Aug 05 14:19:24 Debug: Scripting::fireEvent(): game-start "/home/myusername/ROMs/nes/Legend\ of\ Zelda,\ The.zip" "The Legend Of Zelda"
Aug 05 14:19:24 Debug: Executing: /home/myusername/.emulationstation/scripts/game-start/game_start_logging.sh "/home/myusername/ROMs/nes/Legend\ of\ Zelda,\ The.zip" "The Legend Of Zelda"
.
.
Aug 05 14:27:15 Debug: Scripting::fireEvent(): game-end "/home/myusername/ROMs/nes/Legend\ of\ Zelda,\ The.zip" "The Legend Of Zelda"
Aug 05 14:27:15 Debug: Executing: /home/myusername/.emulationstation/scripts/game-end/game_end_logging.sh "/home/myusername/ROMs/nes/Legend\ of\ Zelda,\ The.zip" "The Legend Of Zelda"
```
Finally after running some games, ~/.emulationstation/game_playlog.txt should contain something like the following:
```
Starting game "The Legend Of Zelda" ("/home/myusername/ROMs/nes/Legend\ of\ Zelda,\ The.zip") at 2020-08-05 14:19:24
Ending game "The Legend Of Zelda" ("/home/myusername/ROMs/nes/Legend\ of\ Zelda,\ The.zip") at 2020-08-05 14:27:15
Starting game "Quake" ("/home/myusername/ROMs/ports/Quakespasm/quakespasm.sh") at 2020-08-05 14:38:46
Ending game "Quake" ("/home/myusername/ROMs/ports/Quakespasm/quakespasm.sh") at 2020-08-05 15:13:58
Starting game "Pirates!" ("/home/myusername/ROMs/c64/Multidisk/Pirates/Pirates!.m3u") at 2020-08-05 15:15:24
Ending game "Pirates!" ("/home/myusername/ROMs/c64/Multidisk/Pirates/Pirates!.m3u") at 2020-08-05 15:17:11