Supermodel/Src/Graphics/New3D/R3DShaderQuads.h

500 lines
13 KiB
C
Raw Normal View History

#ifndef _R3DSHADERQUADS_H_
#define _R3DSHADERQUADS_H_
static const char *vertexShaderR3DQuads = R"glsl(
#version 450 core
// uniforms
uniform float modelScale;
uniform float nodeAlpha;
uniform mat4 modelMat;
uniform mat4 projMat;
uniform bool translatorMap;
// attributes
in vec4 inVertex;
in vec3 inNormal;
in vec2 inTexCoord;
in vec3 inFaceNormal; // used to emulate r3d culling
in float inFixedShade;
in vec4 inColour;
// outputs to geometry shader
out VS_OUT
{
vec3 viewVertex;
vec3 viewNormal; // per vertex normal vector
vec2 texCoord;
vec4 color;
float fixedShade;
float discardPoly; // can't have varying bool (glsl spec)
} vs_out;
vec4 GetColour(vec4 colour)
{
vec4 c = colour;
if(translatorMap) {
c.rgb *= 16.0;
}
c.a *= nodeAlpha;
return c;
}
float CalcBackFace(in vec3 viewVertex)
{
vec3 vt = viewVertex; // - vec3(0.0);
vec3 vn = mat3(modelMat) * inFaceNormal;
// dot product of face normal with view direction
return dot(vt, vn);
}
void main(void)
{
vs_out.viewVertex = vec3(modelMat * inVertex);
vs_out.viewNormal = (mat3(modelMat) * inNormal) / modelScale;
vs_out.discardPoly = CalcBackFace(vs_out.viewVertex);
vs_out.color = GetColour(inColour);
vs_out.texCoord = inTexCoord;
vs_out.fixedShade = inFixedShade;
gl_Position = projMat * modelMat * inVertex;
}
)glsl";
static const char *geometryShaderR3DQuads = R"glsl(
#version 450 core
layout (lines_adjacency) in;
layout (triangle_strip, max_vertices = 4) out;
in VS_OUT
{
vec3 viewVertex;
vec3 viewNormal; // per vertex normal vector
vec2 texCoord;
vec4 color;
float fixedShade;
float discardPoly; // can't have varying bool (glsl spec)
} gs_in[4];
out GS_OUT
{
noperspective vec2 v[4];
noperspective float area[4];
flat float oneOverW[4];
//our regular attributes
flat vec3 viewVertex[4];
flat vec3 viewNormal[4]; // per vertex normal vector
flat vec2 texCoord[4];
flat vec4 color;
flat float fixedShade[4];
} gs_out;
//a*b - c*d, computed in a stable fashion (Kahan)
float DifferenceOfProducts(float a, float b, float c, float d)
{
precise float cd = c * d;
precise float err = fma(-c, d, cd);
precise float dop = fma(a, b, -cd);
return dop + err;
}
void main(void)
{
if(gs_in[0].discardPoly > 0) {
return; //emulate back face culling here (all vertices in poly have same value)
}
vec2 v[4];
for (int i=0; i<4; i++) {
float oneOverW = 1.0 / gl_in[i].gl_Position.w;
gs_out.oneOverW[i] = oneOverW;
v[i] = gl_in[i].gl_Position.xy * oneOverW;
// our regular vertex attribs
gs_out.viewVertex[i] = gs_in[i].viewVertex * oneOverW;
gs_out.viewNormal[i] = gs_in[i].viewNormal * oneOverW;
gs_out.texCoord[i] = gs_in[i].texCoord * oneOverW;
gs_out.fixedShade[i] = gs_in[i].fixedShade * oneOverW;
}
// flat attributes
gs_out.color = gs_in[0].color;
// precompute crossproducts for all vertex combinations to be looked up in loop below for area computation
precise float cross[4][4];
for (int i=0; i<4; i++)
{
cross[i][i] = 0.0;
for (int j=i+1; j<4; j++)
cross[i][j] = DifferenceOfProducts(gl_in[i].gl_Position.x, gl_in[j].gl_Position.y, gl_in[j].gl_Position.x, gl_in[i].gl_Position.y) / (gl_in[i].gl_Position.w * gl_in[j].gl_Position.w);
}
for (int i=1; i<4; i++)
for (int j=0; j<i; j++)
cross[i][j] = -cross[j][i];
for (int i=0; i<4; i++) {
// Mapping of polygon vertex order to triangle strip vertex order.
//
// Quad (lines adjacency) Triangle strip
// vertex order: vertex order:
//
// 1----2 1----3
// | | ===> | \ |
// | | | \ |
// 0----3 0----2
//
int reorder[4] = int[]( 1, 0, 2, 3 );
int ii = reorder[i];
for (int j=0; j<4; j++) {
gs_out.v[j] = v[j] - v[ii];
int j_next = (j+1) % 4;
// compute area via shoelace algorithm BUT divided by w afterwards to improve precision!
// in addition also use Kahans algorithm to further improve precision of the 2D crossproducts
gs_out.area[j] = cross[j][j_next] + cross[j_next][ii] + cross[ii][j];
}
gl_Position = gl_in[ii].gl_Position;
EmitVertex();
}
}
)glsl";
static const char *fragmentShaderR3DQuads = R"glsl(
#version 450 core
uniform usampler2D textureBank[2]; // entire texture sheet
// texturing
uniform bool textureEnabled;
uniform bool microTexture;
uniform float microTextureScale;
uniform int microTextureID;
uniform ivec4 baseTexInfo; // x/y are x,y positions in the texture sheet. z/w are with and height
uniform int baseTexType;
uniform bool textureInverted;
uniform bool textureAlpha;
uniform bool alphaTest;
uniform bool discardAlpha;
uniform ivec2 textureWrapMode;
uniform int texturePage;
// general
uniform vec3 fogColour;
uniform vec4 spotEllipse; // spotlight ellipse position: .x=X position (screen coordinates), .y=Y position, .z=half-width, .w=half-height)
uniform vec2 spotRange; // spotlight Z range: .x=start (viewspace coordinates), .y=limit
uniform vec3 spotColor; // spotlight RGB color
uniform vec3 spotFogColor; // spotlight RGB color on fog
uniform vec3 lighting[2]; // lighting state (lighting[0] = sun direction, lighting[1].x,y = diffuse, ambient intensities from 0-1.0)
uniform bool lightEnabled; // lighting enabled (1.0) or luminous (0.0), drawn at full intensity
uniform bool sunClamp; // not used by daytona and la machine guns
uniform bool intensityClamp; // some games such as daytona and
uniform bool specularEnabled; // specular enabled
uniform float specularValue; // specular coefficient
uniform float shininess; // specular shininess
uniform float fogIntensity;
uniform float fogDensity;
uniform float fogStart;
uniform float fogAttenuation;
uniform float fogAmbient;
uniform bool fixedShading;
uniform int hardwareStep;
uniform int colourLayer;
uniform bool polyAlpha;
// matrices (shared with vertex shader)
uniform mat4 projMat;
//interpolated inputs from geometry shader
in GS_OUT
{
noperspective vec2 v[4];
noperspective float area[4];
flat float oneOverW[4];
//our regular attributes
flat vec3 viewVertex[4];
flat vec3 viewNormal[4]; // per vertex normal vector
flat vec2 texCoord[4];
flat vec4 color;
flat float fixedShade[4];
} fs_in;
//our calculated vertex attributes from the above
vec3 fsViewVertex;
vec3 fsViewNormal;
vec2 fsTexCoord;
float fsFixedShade;
vec4 fsColor;
//outputs
layout(location = 0) out vec4 out0; // opaque
layout(location = 1) out vec4 out1; // trans layer 1
layout(location = 2) out vec4 out2; // trans layer 2
// forward declarations (see common file)
float CalcFog();
void Step15Luminous(inout vec4 colour);
vec4 GetTextureValue();
void WriteOutputs(vec4 colour, int layer);
float Sqr(float a);
float SqrLength(vec2 a);
void QuadraticInterpolation()
{
vec2 s[4];
float A[4];
for (int i=0; i<4; i++) {
s[i] = fs_in.v[i];
A[i] = fs_in.area[i];
}
float D[4];
float r[4];
for (int i=0; i<4; i++) {
int i_next = (i+1)%4;
D[i] = dot(s[i], s[i_next]);
r[i] = length(s[i]);
if (fs_in.oneOverW[i] < 0.0) { // is w[i] negative?
r[i] = -r[i];
}
}
float t[4];
for (int i=0; i<4; i++) {
int i_next = (i+1)%4;
if(A[i]==0.0) t[i] = 0.0; // check for zero area + div by zero
else t[i] = (r[i]*r[i_next] - D[i]) / A[i];
}
float uSum = 0.0;
float u[4];
for (uint i=0; i<4; i++) {
uint i_prev = (i-1)%4;
u[i] = (t[i_prev] + t[i]) / r[i];
uSum += u[i];
}
float lambda[4];
for (int i=0; i<4; i++) {
lambda[i] = u[i] / uSum;
}
/* Discard fragments when all the weights are neither all negative nor all positive. */
int lambdaSignCount = 0;
for (int i=0; i<4; i++) {
if (fs_in.oneOverW[i] * lambda[i] < 0.0) {
lambdaSignCount--;
} else {
lambdaSignCount++;
}
}
if (lambdaSignCount != 4) {
if(!gl_HelperInvocation) {
discard;
}
}
float interp_oneOverW = 0.0;
fsViewVertex = vec3(0.0);
fsViewNormal = vec3(0.0);
fsTexCoord = vec2(0.0);
fsFixedShade = 0.0;
fsColor = fs_in.color;
for (int i=0; i<4; i++) {
fsViewVertex += lambda[i] * fs_in.viewVertex[i];
fsViewNormal += lambda[i] * fs_in.viewNormal[i];
fsTexCoord += lambda[i] * fs_in.texCoord[i];
fsFixedShade += lambda[i] * fs_in.fixedShade[i];
interp_oneOverW += lambda[i] * fs_in.oneOverW[i];
}
fsViewVertex /= interp_oneOverW;
fsViewNormal /= interp_oneOverW;
fsTexCoord /= interp_oneOverW;
fsFixedShade /= interp_oneOverW;
vec4 vertex;
float depth;
// dirty hack for co-planar polys that really need 100% identical values to depth test correctly
// the reason we waste cycles and calculate depth value here is because we have run out of vertex attribs
if(fs_in.oneOverW[0]==fs_in.oneOverW[1] &&
fs_in.oneOverW[1]==fs_in.oneOverW[2] &&
fs_in.oneOverW[2]==fs_in.oneOverW[3]) {
fsViewVertex.z = fs_in.viewVertex[0].z / fs_in.oneOverW[0];
vertex = projMat * vec4(fsViewVertex,1.0);
depth = vertex.z / vertex.w;
}
else {
vertex.z = projMat[2][2] * fsViewVertex.z + projMat[3][2]; // standard projMat * vertex - but just using Z components
depth = vertex.z * interp_oneOverW;
}
gl_FragDepth = depth;
}
void main()
{
vec4 tex1Data;
vec4 colData;
vec4 finalData;
vec4 fogData;
QuadraticInterpolation(); // calculate our vertex attributes
fogData = vec4(fogColour.rgb * fogAmbient, CalcFog());
tex1Data = vec4(1.0, 1.0, 1.0, 1.0);
if(textureEnabled) {
tex1Data = GetTextureValue();
}
colData = fsColor;
Step15Luminous(colData); // no-op for step 2.0+
finalData = tex1Data * colData;
if (finalData.a < (1.0/32.0)) { // basically chuck out any totally transparent pixels value = 1/16 the smallest transparency level h/w supports
discard;
}
float ellipse;
ellipse = SqrLength((gl_FragCoord.xy - spotEllipse.xy) / spotEllipse.zw); // decay rate = square of distance from center
ellipse = 1.0 - ellipse; // invert
ellipse = max(0.0, ellipse); // clamp
// Compute spotlight and apply lighting
float enable, absExtent, d, inv_r, range;
// start of spotlight
enable = step(spotRange.x, -fsViewVertex.z);
if (spotRange.y == 0.0) {
range = 0.0;
}
else {
absExtent = abs(spotRange.y);
d = spotRange.x + absExtent + fsViewVertex.z;
d = min(d, 0.0);
// slope of decay function
inv_r = 1.0 / (1.0 + absExtent);
// inverse-linear falloff
// Reference: https://imdoingitwrong.wordpress.com/2011/01/31/light-attenuation/
// y = 1 / (d/r + 1)^2
range = 1.0 / Sqr(d * inv_r - 1.0);
range *= enable;
}
float lobeEffect = range * ellipse;
float lobeFogEffect = enable * ellipse;
if (lightEnabled) {
vec3 lightIntensity;
vec3 sunVector; // sun lighting vector (as reflecting away from vertex)
float sunFactor; // sun light projection along vertex normal (0.0 to 1.0)
// Sun angle
sunVector = lighting[0];
// Compute diffuse factor for sunlight
if(fixedShading) {
sunFactor = fsFixedShade;
}
else {
sunFactor = dot(sunVector, fsViewNormal);
}
// Clamp ceil, fix for upscaled models without "modelScale" defined
sunFactor = clamp(sunFactor,-1.0,1.0);
// Optional clamping, value is allowed to be negative
// We suspect that translucent polygons are always clamped (e.g. lasers in Daytona 2)
if(sunClamp || polyAlpha) {
sunFactor = max(sunFactor,0.0);
}
// Total light intensity: sum of all components
lightIntensity = vec3(sunFactor*lighting[1].x + lighting[1].y); // diffuse + ambient
lightIntensity.rgb += spotColor*lobeEffect;
// Upper clamp is optional, step 1.5+ games will drive brightness beyond 100%
if(intensityClamp) {
lightIntensity = min(lightIntensity,1.0);
}
finalData.rgb *= lightIntensity;
// for now assume fixed shading doesn't work with specular
if (specularEnabled) {
float exponent, NdotL, specularFactor;
vec4 biasIndex, expIndex, multIndex;
// Always clamp floor to zero, we don't want deep black areas
NdotL = max(0.0,sunFactor);
expIndex = vec4(8.0, 16.0, 32.0, 64.0);
multIndex = vec4(2.0, 2.0, 3.0, 4.0);
biasIndex = vec4(0.95, 0.95, 1.05, 1.0);
exponent = expIndex[int(shininess)] / biasIndex[int(shininess)];
specularFactor = pow(NdotL, exponent);
specularFactor *= multIndex[int(shininess)];
specularFactor *= biasIndex[int(shininess)];
specularFactor *= specularValue;
specularFactor *= lighting[1].x;
if (colData.a < 1.0) {
/// Specular hi-light affects translucent polygons alpha channel ///
finalData.a = max(finalData.a, specularFactor);
}
finalData.rgb += vec3(specularFactor);
}
}
// Final clamp: we need it for proper shading in dimmed light and dark ambients
finalData.rgb = min(finalData.rgb, vec3(1.0));
// Spotlight on fog
vec3 lSpotFogColor = spotFogColor * fogAttenuation * fogColour.rgb * lobeFogEffect;
// Fog & spotlight applied
finalData.rgb = mix(finalData.rgb, fogData.rgb + lSpotFogColor, fogData.a);
// Write outputs to colour buffers
WriteOutputs(finalData,colourLayer);
}
)glsl";
#endif