Duckstation/src/core/gpu.cpp

939 lines
27 KiB
C++
Raw Normal View History

#include "gpu.h"
#include "YBaseLib/Log.h"
2019-09-14 10:28:47 +00:00
#include "common/state_wrapper.h"
2019-09-11 04:59:41 +00:00
#include "dma.h"
2019-09-17 14:22:41 +00:00
#include "interrupt_controller.h"
#include "stb_image_write.h"
#include "system.h"
2019-09-20 13:40:19 +00:00
#include "timers.h"
#include <imgui.h>
Log_SetChannel(GPU);
static u32 s_cpu_to_vram_dump_id = 1;
static u32 s_vram_to_cpu_dump_id = 1;
GPU::GPU() = default;
GPU::~GPU() = default;
2019-09-20 13:40:19 +00:00
bool GPU::Initialize(System* system, DMA* dma, InterruptController* interrupt_controller, Timers* timers)
{
2019-09-12 14:18:13 +00:00
m_system = system;
m_dma = dma;
2019-09-17 14:22:41 +00:00
m_interrupt_controller = interrupt_controller;
2019-09-20 13:40:19 +00:00
m_timers = timers;
return true;
}
void GPU::Reset()
{
SoftReset();
}
void GPU::SoftReset()
{
m_GPUSTAT.bits = 0x14802000;
2019-10-04 10:33:37 +00:00
m_drawing_area = {};
m_drawing_offset = {};
2019-09-17 04:25:25 +00:00
m_crtc_state = {};
m_crtc_state.regs.display_address_start = 0;
m_crtc_state.regs.horizontal_display_range = 0xC60260;
m_crtc_state.regs.vertical_display_range = 0x3FC10;
2019-10-04 10:33:37 +00:00
m_GP0_command.clear();
m_GPUREAD_buffer.clear();
m_render_state = {};
m_render_state.texture_page_changed = true;
m_render_state.texture_color_mode_changed = true;
m_render_state.transparency_mode_changed = true;
UpdateGPUSTAT();
2019-09-17 04:25:25 +00:00
UpdateCRTCConfig();
2019-09-11 04:59:41 +00:00
}
2019-09-14 10:28:47 +00:00
bool GPU::DoState(StateWrapper& sw)
{
if (sw.IsReading())
2019-10-04 10:33:37 +00:00
{
// perform a reset to discard all pending draws/fb state
Reset();
}
2019-09-14 10:28:47 +00:00
sw.Do(&m_GPUSTAT.bits);
sw.Do(&m_render_state.texture_page_x);
sw.Do(&m_render_state.texture_page_y);
sw.Do(&m_render_state.texture_palette_x);
sw.Do(&m_render_state.texture_palette_y);
sw.Do(&m_render_state.texture_color_mode);
sw.Do(&m_render_state.transparency_mode);
sw.Do(&m_render_state.texture_window_mask_x);
sw.Do(&m_render_state.texture_window_mask_y);
sw.Do(&m_render_state.texture_window_offset_x);
sw.Do(&m_render_state.texture_window_offset_y);
sw.Do(&m_render_state.texture_x_flip);
sw.Do(&m_render_state.texture_y_flip);
sw.Do(&m_render_state.texpage_attribute);
sw.Do(&m_render_state.texlut_attribute);
2019-10-05 13:25:06 +00:00
sw.Do(&m_render_state.texture_window_value);
sw.Do(&m_render_state.texture_page_changed);
sw.Do(&m_render_state.texture_color_mode_changed);
sw.Do(&m_render_state.transparency_mode_changed);
2019-10-05 13:25:06 +00:00
sw.Do(&m_render_state.texture_window_changed);
sw.Do(&m_drawing_area.left);
sw.Do(&m_drawing_area.top);
sw.Do(&m_drawing_area.right);
sw.Do(&m_drawing_area.bottom);
2019-09-14 10:28:47 +00:00
sw.Do(&m_drawing_offset.x);
sw.Do(&m_drawing_offset.y);
sw.Do(&m_drawing_offset.x);
2019-09-17 04:40:23 +00:00
sw.Do(&m_crtc_state.regs.display_address_start);
sw.Do(&m_crtc_state.regs.horizontal_display_range);
sw.Do(&m_crtc_state.regs.vertical_display_range);
sw.Do(&m_crtc_state.horizontal_resolution);
sw.Do(&m_crtc_state.vertical_resolution);
sw.Do(&m_crtc_state.dot_clock_divider);
sw.Do(&m_crtc_state.visible_horizontal_resolution);
sw.Do(&m_crtc_state.visible_vertical_resolution);
sw.Do(&m_crtc_state.ticks_per_scanline);
sw.Do(&m_crtc_state.visible_ticks_per_scanline);
sw.Do(&m_crtc_state.total_scanlines_per_frame);
sw.Do(&m_crtc_state.fractional_ticks);
sw.Do(&m_crtc_state.current_tick_in_scanline);
sw.Do(&m_crtc_state.current_scanline);
sw.Do(&m_crtc_state.in_hblank);
sw.Do(&m_crtc_state.in_vblank);
if (sw.IsReading())
UpdateSliceTicks();
2019-09-14 10:28:47 +00:00
sw.Do(&m_GP0_command);
sw.Do(&m_GPUREAD_buffer);
if (sw.IsReading())
{
m_render_state.texture_page_changed = true;
m_render_state.texture_color_mode_changed = true;
m_render_state.transparency_mode_changed = true;
2019-10-05 13:25:06 +00:00
m_render_state.texture_window_changed = true;
UpdateDrawingArea();
2019-09-14 10:28:47 +00:00
UpdateGPUSTAT();
}
2019-09-14 10:45:26 +00:00
if (!sw.DoMarker("GPU-VRAM"))
return false;
if (sw.IsReading())
{
std::vector<u16> vram;
sw.Do(&vram);
UpdateVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT, vram.data());
}
else
{
std::vector<u16> vram(VRAM_WIDTH * VRAM_HEIGHT);
ReadVRAM(0, 0, VRAM_WIDTH, VRAM_HEIGHT, vram.data());
sw.Do(&vram);
}
2019-09-14 10:28:47 +00:00
return !sw.HasError();
}
void GPU::ResetGraphicsAPIState() {}
void GPU::RestoreGraphicsAPIState() {}
void GPU::DrawStatistics() {}
void GPU::DrawDebugMenu()
{
ImGui::MenuItem("Show VRAM", nullptr, &m_debug_options.show_vram);
ImGui::MenuItem("Dump CPU to VRAM Copies", nullptr, &m_debug_options.dump_cpu_to_vram_copies);
ImGui::MenuItem("Dump VRAM to CPU Copies", nullptr, &m_debug_options.dump_vram_to_cpu_copies);
}
void GPU::UpdateSettings() {}
2019-09-26 04:03:32 +00:00
void GPU::UpdateGPUSTAT()
2019-09-11 04:59:41 +00:00
{
m_GPUSTAT.ready_to_send_vram = !m_GPUREAD_buffer.empty();
m_GPUSTAT.ready_to_recieve_cmd = m_GPUREAD_buffer.empty();
m_GPUSTAT.ready_to_recieve_dma = m_GPUREAD_buffer.empty();
bool dma_request;
switch (m_GPUSTAT.dma_direction)
{
case DMADirection::Off:
dma_request = false;
break;
case DMADirection::FIFO:
dma_request = true; // FIFO not full/full
break;
case DMADirection::CPUtoGP0:
dma_request = m_GPUSTAT.ready_to_recieve_dma;
break;
case DMADirection::GPUREADtoCPU:
dma_request = m_GPUSTAT.ready_to_send_vram;
break;
default:
dma_request = false;
break;
}
m_GPUSTAT.dma_data_request = dma_request;
m_dma->SetRequest(DMA::Channel::GPU, dma_request);
}
u32 GPU::ReadRegister(u32 offset)
{
2019-09-11 04:59:41 +00:00
switch (offset)
{
2019-09-11 04:59:41 +00:00
case 0x00:
return ReadGPUREAD();
case 0x04:
2019-09-17 04:25:25 +00:00
{
// Bit 31 of GPUSTAT is always clear during vblank.
u32 bits = m_GPUSTAT.bits;
// bits &= (BoolToUInt32(!m_crtc_state.in_vblank) << 31);
return bits;
}
2019-09-11 04:59:41 +00:00
default:
Log_ErrorPrintf("Unhandled register read: %02X", offset);
return UINT32_C(0xFFFFFFFF);
}
2019-09-11 04:59:41 +00:00
}
void GPU::WriteRegister(u32 offset, u32 value)
{
switch (offset)
{
2019-09-11 04:59:41 +00:00
case 0x00:
WriteGP0(value);
return;
case 0x04:
WriteGP1(value);
return;
default:
Log_ErrorPrintf("Unhandled register write: %02X <- %08X", offset, value);
return;
}
2019-09-11 04:59:41 +00:00
}
2019-09-11 04:59:41 +00:00
u32 GPU::DMARead()
{
if (m_GPUSTAT.dma_direction != DMADirection::GPUREADtoCPU)
{
Log_ErrorPrintf("Invalid DMA direction from GPU DMA read");
return UINT32_C(0xFFFFFFFF);
}
return ReadGPUREAD();
}
2019-09-11 04:59:41 +00:00
void GPU::DMAWrite(u32 value)
{
switch (m_GPUSTAT.dma_direction)
{
case DMADirection::CPUtoGP0:
WriteGP0(value);
break;
default:
Log_ErrorPrintf("Unhandled GPU DMA write mode %u for value %08X",
static_cast<u32>(m_GPUSTAT.dma_direction.GetValue()), value);
break;
}
2019-09-11 04:59:41 +00:00
}
2019-09-17 04:25:25 +00:00
void GPU::UpdateCRTCConfig()
{
static constexpr std::array<TickCount, 8> dot_clock_dividers = {{8, 4, 10, 5, 7, 7, 7, 7}};
static constexpr std::array<u32, 8> horizontal_resolutions = {{256, 320, 512, 630, 368, 368, 368, 368}};
static constexpr std::array<u32, 2> vertical_resolutions = {{240, 480}};
CRTCState& cs = m_crtc_state;
const u8 horizontal_resolution_index = m_GPUSTAT.horizontal_resolution_1 | (m_GPUSTAT.horizontal_resolution_2 << 2);
cs.dot_clock_divider = dot_clock_dividers[horizontal_resolution_index];
cs.horizontal_resolution = horizontal_resolutions[horizontal_resolution_index];
cs.vertical_resolution = vertical_resolutions[m_GPUSTAT.vertical_resolution];
// check for a change in resolution
const u32 old_horizontal_resolution = cs.visible_horizontal_resolution;
const u32 old_vertical_resolution = cs.visible_vertical_resolution;
cs.visible_horizontal_resolution = std::max((cs.regs.X2 - cs.regs.X1) / cs.dot_clock_divider, u32(1));
cs.visible_vertical_resolution = cs.regs.Y2 - cs.regs.Y1 + 1;
if (cs.visible_horizontal_resolution != old_horizontal_resolution ||
cs.visible_vertical_resolution != old_vertical_resolution)
{
Log_InfoPrintf("Visible resolution is now %ux%u", cs.visible_horizontal_resolution, cs.visible_vertical_resolution);
}
if (m_GPUSTAT.pal_mode)
{
cs.total_scanlines_per_frame = 314;
cs.ticks_per_scanline = 3406;
}
else
{
cs.total_scanlines_per_frame = 263;
cs.ticks_per_scanline = 3413;
}
UpdateSliceTicks();
}
void GPU::UpdateSliceTicks()
{
2019-09-17 04:25:25 +00:00
// the next event is at the end of the next scanline
2019-09-26 14:03:28 +00:00
#if 1
2019-09-20 13:40:19 +00:00
const TickCount ticks_until_next_event = m_crtc_state.ticks_per_scanline - m_crtc_state.current_tick_in_scanline;
#else
2019-09-17 04:25:25 +00:00
// or at vblank. this will depend on the timer config..
const TickCount ticks_until_next_event =
((m_crtc_state.total_scanlines_per_frame - m_crtc_state.current_scanline) * m_crtc_state.ticks_per_scanline) -
m_crtc_state.current_tick_in_scanline;
2019-09-20 13:40:19 +00:00
#endif
2019-09-17 04:25:25 +00:00
// convert to master clock, rounding up as we want to overshoot not undershoot
const TickCount system_ticks = (ticks_until_next_event * 7 + 10) / 11;
m_system->SetDowncount(system_ticks);
2019-09-17 04:25:25 +00:00
}
void GPU::Execute(TickCount ticks)
{
// convert cpu/master clock to GPU ticks, accounting for partial cycles because of the non-integer divider
{
const TickCount temp = (ticks * 11) + m_crtc_state.fractional_ticks;
m_crtc_state.current_tick_in_scanline += temp / 7;
m_crtc_state.fractional_ticks = temp % 7;
}
while (m_crtc_state.current_tick_in_scanline >= m_crtc_state.ticks_per_scanline)
{
m_crtc_state.current_tick_in_scanline -= m_crtc_state.ticks_per_scanline;
m_crtc_state.current_scanline++;
2019-09-20 13:40:19 +00:00
if (m_timers->IsUsingExternalClock(HBLANK_TIMER_INDEX))
m_timers->AddTicks(HBLANK_TIMER_INDEX, 1);
2019-09-17 04:25:25 +00:00
2019-09-26 14:03:28 +00:00
// past the end of vblank?
if (m_crtc_state.current_scanline >= m_crtc_state.total_scanlines_per_frame)
{
// flush any pending draws and "scan out" the image
FlushRender();
UpdateDisplay();
// start the new frame
m_system->IncrementFrameNumber();
m_crtc_state.current_scanline = 0;
if (m_GPUSTAT.vertical_resolution)
m_GPUSTAT.drawing_even_line ^= true;
}
2019-09-17 04:25:25 +00:00
const bool old_vblank = m_crtc_state.in_vblank;
2019-09-20 13:40:19 +00:00
const bool new_vblank = m_crtc_state.current_scanline >= m_crtc_state.visible_vertical_resolution;
if (new_vblank != old_vblank)
2019-09-17 04:25:25 +00:00
{
2019-09-20 13:40:19 +00:00
m_crtc_state.in_vblank = new_vblank;
if (!old_vblank)
{
Log_DebugPrintf("Now in v-blank");
m_interrupt_controller->InterruptRequest(InterruptController::IRQ::VBLANK);
}
m_timers->SetGate(HBLANK_TIMER_INDEX, new_vblank);
2019-09-17 04:25:25 +00:00
}
// alternating even line bit in 240-line mode
if (!m_crtc_state.vertical_resolution)
m_GPUSTAT.drawing_even_line = ConvertToBoolUnchecked(m_crtc_state.current_scanline & u32(1));
}
UpdateSliceTicks();
}
2019-09-11 04:59:41 +00:00
u32 GPU::ReadGPUREAD()
{
if (m_GPUREAD_buffer.empty())
{
2019-10-05 12:22:49 +00:00
Log_DevPrintf("GPUREAD read while buffer is empty");
return UINT32_C(0xFFFFFFFF);
}
const u32 value = m_GPUREAD_buffer.front();
m_GPUREAD_buffer.pop_front();
UpdateGPUSTAT();
return value;
}
void GPU::WriteGP0(u32 value)
{
2019-09-12 02:53:04 +00:00
m_GP0_command.push_back(value);
2019-09-12 15:10:08 +00:00
Assert(m_GP0_command.size() <= 1048576);
const u8 command = Truncate8(m_GP0_command[0] >> 24);
const u32 param = m_GP0_command[0] & UINT32_C(0x00FFFFFF);
UpdateGPUSTAT();
2019-09-12 02:53:04 +00:00
if (command >= 0x20 && command <= 0x7F)
{
// Draw polygon
if (!HandleRenderCommand())
return;
}
else
{
switch (command)
{
2019-09-12 02:53:04 +00:00
case 0x00: // NOP
break;
2019-09-17 14:58:30 +00:00
case 0x01: // Clear cache
break;
case 0x02: // Fill Rectangle
2019-09-14 06:43:39 +00:00
{
if (!HandleFillRectangleCommand())
return;
}
break;
2019-09-12 15:10:08 +00:00
case 0xA0: // Copy Rectangle CPU->VRAM
{
if (!HandleCopyRectangleCPUToVRAMCommand())
return;
}
break;
2019-09-17 14:58:30 +00:00
case 0xC0: // Copy Rectangle VRAM->CPU
{
if (!HandleCopyRectangleVRAMToCPUCommand())
return;
}
break;
2019-09-17 14:58:30 +00:00
case 0x80: // Copy Rectangle VRAM->VRAM
{
if (!HandleCopyRectangleVRAMToVRAMCommand())
return;
}
break;
2019-09-12 02:53:04 +00:00
case 0xE1: // Set draw mode
{
// 0..10 bits match GPUSTAT
const u32 MASK = ((UINT32_C(1) << 11) - 1);
m_GPUSTAT.bits = (m_GPUSTAT.bits & ~MASK) | param & MASK;
m_GPUSTAT.texture_disable = (param & (UINT32_C(1) << 11)) != 0;
m_render_state.texture_x_flip = (param & (UINT32_C(1) << 12)) != 0;
m_render_state.texture_y_flip = (param & (UINT32_C(1) << 13)) != 0;
2019-09-12 02:53:04 +00:00
Log_DebugPrintf("Set draw mode %08X", param);
}
break;
2019-09-12 02:53:04 +00:00
case 0xE2: // set texture window
{
2019-10-05 13:25:06 +00:00
m_render_state.SetTextureWindow(value);
Log_DebugPrintf("Set texture window %02X %02X %02X %02X", m_render_state.texture_window_mask_x,
m_render_state.texture_window_mask_y, m_render_state.texture_window_offset_x,
m_render_state.texture_window_offset_y);
2019-09-12 02:53:04 +00:00
}
break;
2019-09-12 02:53:04 +00:00
case 0xE3: // Set drawing area top left
{
const u32 left = param & UINT32_C(0x3FF);
const u32 top = (param >> 10) & UINT32_C(0x1FF);
Log_DebugPrintf("Set drawing area top-left: (%u, %u)", left, top);
if (m_drawing_area.left != left || m_drawing_area.top != top)
{
FlushRender();
m_drawing_area.left = left;
m_drawing_area.top = top;
UpdateDrawingArea();
}
2019-09-12 02:53:04 +00:00
}
break;
2019-09-12 02:53:04 +00:00
case 0xE4: // Set drawing area bottom right
{
const u32 right = param & UINT32_C(0x3FF);
const u32 bottom = (param >> 10) & UINT32_C(0x1FF);
Log_DebugPrintf("Set drawing area bottom-right: (%u, %u)", m_drawing_area.right, m_drawing_area.bottom);
if (m_drawing_area.right != right || m_drawing_area.bottom != bottom)
{
FlushRender();
m_drawing_area.right = right;
m_drawing_area.bottom = bottom;
UpdateDrawingArea();
}
}
2019-09-12 02:53:04 +00:00
break;
case 0xE5: // Set drawing offset
{
m_drawing_offset.x = SignExtendN<11, u32>(param & UINT32_C(0x7FF));
m_drawing_offset.y = SignExtendN<11, u32>((param >> 11) & UINT32_C(0x7FF));
2019-09-12 02:53:04 +00:00
Log_DebugPrintf("Set drawing offset (%d, %d)", m_drawing_offset.x, m_drawing_offset.y);
}
break;
2019-09-12 02:53:04 +00:00
case 0xE6: // Mask bit setting
{
m_GPUSTAT.draw_set_mask_bit = (param & UINT32_C(0x01)) != 0;
m_GPUSTAT.draw_to_masked_pixels = (param & UINT32_C(0x01)) != 0;
Log_DebugPrintf("Set mask bit %u %u", BoolToUInt32(m_GPUSTAT.draw_set_mask_bit),
BoolToUInt32(m_GPUSTAT.draw_to_masked_pixels));
}
2019-09-12 02:53:04 +00:00
break;
2019-09-12 02:53:04 +00:00
default:
{
Log_ErrorPrintf("Unimplemented GP0 command 0x%02X", command);
}
break;
}
}
2019-09-12 02:53:04 +00:00
m_GP0_command.clear();
UpdateGPUSTAT();
}
void GPU::WriteGP1(u32 value)
{
const u8 command = Truncate8(value >> 24);
2019-09-11 04:59:41 +00:00
const u32 param = value & UINT32_C(0x00FFFFFF);
switch (command)
{
case 0x01: // Clear FIFO
{
m_GP0_command.clear();
Log_DebugPrintf("GP1 clear FIFO");
UpdateGPUSTAT();
}
break;
2019-10-05 12:22:49 +00:00
case 0x02: // Acknowledge Interrupt
{
Log_DebugPrintf("Acknowledge interrupt");
m_GPUSTAT.interrupt_request = false;
}
break;
2019-09-11 04:59:41 +00:00
case 0x04: // DMA Direction
{
m_GPUSTAT.dma_direction = static_cast<DMADirection>(param);
Log_DebugPrintf("DMA direction <- 0x%02X", static_cast<u32>(m_GPUSTAT.dma_direction.GetValue()));
UpdateGPUSTAT();
}
break;
case 0x05: // Set display start address
{
2019-09-17 04:25:25 +00:00
m_crtc_state.regs.display_address_start = param & CRTCState::Regs::DISPLAY_ADDRESS_START_MASK;
Log_DebugPrintf("Display address start <- 0x%08X", m_crtc_state.regs.display_address_start);
m_system->IncrementInternalFrameNumber();
2019-09-17 04:25:25 +00:00
}
break;
case 0x06: // Set horizontal display range
{
m_crtc_state.regs.horizontal_display_range = param & CRTCState::Regs::HORIZONTAL_DISPLAY_RANGE_MASK;
Log_DebugPrintf("Horizontal display range <- 0x%08X", m_crtc_state.regs.horizontal_display_range);
UpdateCRTCConfig();
}
break;
case 0x07: // Set display start address
{
m_crtc_state.regs.vertical_display_range = param & CRTCState::Regs::VERTICAL_DISPLAY_RANGE_MASK;
Log_DebugPrintf("Vertical display range <- 0x%08X", m_crtc_state.regs.vertical_display_range);
UpdateCRTCConfig();
}
break;
case 0x08: // Set display mode
{
union GP1_08h
{
u32 bits;
BitField<u32, u8, 0, 2> horizontal_resolution_1;
BitField<u32, u8, 2, 1> vertical_resolution;
BitField<u32, bool, 3, 1> pal_mode;
BitField<u32, bool, 4, 1> display_area_color_depth;
BitField<u32, bool, 5, 1> vertical_interlace;
BitField<u32, bool, 6, 1> horizontal_resolution_2;
BitField<u32, bool, 7, 1> reverse_flag;
};
const GP1_08h dm{param};
m_GPUSTAT.horizontal_resolution_1 = dm.horizontal_resolution_1;
m_GPUSTAT.vertical_resolution = dm.vertical_resolution;
m_GPUSTAT.pal_mode = dm.pal_mode;
m_GPUSTAT.display_area_color_depth_24 = dm.display_area_color_depth;
m_GPUSTAT.vertical_interlace = dm.vertical_interlace;
m_GPUSTAT.horizontal_resolution_2 = dm.horizontal_resolution_2;
m_GPUSTAT.reverse_flag = dm.reverse_flag;
Log_DebugPrintf("Set display mode <- 0x%08X", dm.bits);
UpdateCRTCConfig();
2019-09-11 04:59:41 +00:00
}
break;
2019-10-05 12:22:49 +00:00
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
case 0x18:
case 0x19:
case 0x1A:
case 0x1B:
case 0x1C:
case 0x1D:
case 0x1E:
case 0x1F:
{
HandleGetGPUInfoCommand();
}
break;
2019-09-11 04:59:41 +00:00
default:
Log_ErrorPrintf("Unimplemented GP1 command 0x%02X", command);
break;
2019-10-05 12:22:49 +00:00
}
}
void GPU::HandleGetGPUInfoCommand()
{
const u8 subcommand = Truncate8(m_GP0_command[0] & 0x07);
switch (subcommand)
{
case 0x00:
case 0x01:
case 0x06:
case 0x07:
// leave GPUREAD intact
break;
default:
Log_WarningPrintf("Unhandled GetGPUInfo(0x%02X)", ZeroExtend32(subcommand));
break;
2019-09-11 04:59:41 +00:00
}
}
2019-09-12 02:53:04 +00:00
bool GPU::HandleRenderCommand()
{
const u8 command = Truncate8(m_GP0_command[0] >> 24);
2019-09-12 02:53:04 +00:00
const RenderCommand rc{m_GP0_command[0]};
u8 words_per_vertex;
u32 num_vertices;
u32 total_words;
switch (rc.primitive)
{
case Primitive::Polygon:
{
// shaded vertices use the colour from the first word for the first vertex
words_per_vertex = 1 + BoolToUInt8(rc.texture_enable) + BoolToUInt8(rc.shading_enable);
num_vertices = rc.quad_polygon ? 4 : 3;
total_words = words_per_vertex * num_vertices + BoolToUInt8(!rc.shading_enable);
}
break;
case Primitive::Line:
{
words_per_vertex = 1 + BoolToUInt8(rc.shading_enable);
if (rc.polyline)
{
// polyline goes until we hit the termination code
num_vertices = 0;
bool found_terminator = false;
2019-09-27 12:45:57 +00:00
for (u32 pos = BoolToUInt32(!rc.shading_enable); pos < static_cast<u32>(m_GP0_command.size());
pos += words_per_vertex)
2019-09-12 02:53:04 +00:00
{
if (m_GP0_command[pos] == 0x55555555)
{
found_terminator = true;
break;
}
num_vertices++;
}
if (!found_terminator)
return false;
}
else
{
num_vertices = 2;
}
total_words = words_per_vertex * num_vertices + BoolToUInt8(!rc.shading_enable);
}
break;
case Primitive::Rectangle:
{
words_per_vertex =
2 + BoolToUInt8(rc.texture_enable) + BoolToUInt8(rc.rectangle_size == DrawRectangleSize::Variable);
2019-09-12 02:53:04 +00:00
num_vertices = 1;
total_words = words_per_vertex;
}
break;
default:
UnreachableCode();
return true;
}
if (m_GP0_command.size() < total_words)
return false;
2019-09-12 02:53:04 +00:00
static constexpr std::array<const char*, 4> primitive_names = {{"", "polygon", "line", "rectangle"}};
Log_DebugPrintf("Render %s %s %s %s %s (%u verts, %u words per vert)", rc.quad_polygon ? "four-point" : "three-point",
rc.transparency_enable ? "semi-transparent" : "opaque",
rc.texture_enable ? "textured" : "non-textured", rc.shading_enable ? "shaded" : "monochrome",
primitive_names[static_cast<u8>(rc.primitive.GetValue())], ZeroExtend32(num_vertices),
ZeroExtend32(words_per_vertex));
2019-09-12 02:53:04 +00:00
DispatchRenderCommand(rc, num_vertices);
2019-09-14 06:43:39 +00:00
return true;
}
bool GPU::HandleFillRectangleCommand()
{
if (m_GP0_command.size() < 3)
return false;
const u32 color = m_GP0_command[0] & UINT32_C(0x00FFFFFF);
2019-09-14 06:43:39 +00:00
const u32 dst_x = m_GP0_command[1] & UINT32_C(0xFFFF);
const u32 dst_y = m_GP0_command[1] >> 16;
const u32 width = m_GP0_command[2] & UINT32_C(0xFFFF);
const u32 height = m_GP0_command[2] >> 16;
Log_DebugPrintf("Fill VRAM rectangle offset=(%u,%u), size=(%u,%u)", dst_x, dst_y, width, height);
// Drop higher precision when filling. Bit15 is set to 0.
// TODO: Force 8-bit color option.
const u16 color16 = RGBA8888ToRGBA5551(color);
FillVRAM(dst_x, dst_y, width, height, color16);
return true;
}
2019-09-12 02:53:04 +00:00
2019-09-12 15:10:08 +00:00
bool GPU::HandleCopyRectangleCPUToVRAMCommand()
{
if (m_GP0_command.size() < 3)
return false;
const u32 copy_width = m_GP0_command[2] & UINT32_C(0xFFFF);
const u32 copy_height = m_GP0_command[2] >> 16;
const u32 num_pixels = copy_width * copy_height;
const u32 num_words = 3 + ((num_pixels + 1) / 2);
if (m_GP0_command.size() < num_words)
return false;
const u32 dst_x = m_GP0_command[1] & UINT32_C(0xFFFF);
const u32 dst_y = m_GP0_command[1] >> 16;
Log_DebugPrintf("Copy rectangle from CPU to VRAM offset=(%u,%u), size=(%u,%u)", dst_x, dst_y, copy_width,
copy_height);
if ((dst_x + copy_width) > VRAM_WIDTH || (dst_y + copy_height) > VRAM_HEIGHT)
{
Panic("Out of bounds VRAM copy");
return true;
}
if (m_debug_options.dump_cpu_to_vram_copies)
{
DumpVRAMToFile(SmallString::FromFormat("cpu_to_vram_copy_%u.png", s_cpu_to_vram_dump_id++), copy_width, copy_height,
sizeof(u16) * copy_width, &m_GP0_command[3], true);
}
FlushRender();
2019-09-12 15:10:08 +00:00
UpdateVRAM(dst_x, dst_y, copy_width, copy_height, &m_GP0_command[3]);
return true;
}
bool GPU::HandleCopyRectangleVRAMToCPUCommand()
{
if (m_GP0_command.size() < 3)
return false;
const u32 width = m_GP0_command[2] & UINT32_C(0xFFFF);
const u32 height = m_GP0_command[2] >> 16;
const u32 num_pixels = width * height;
const u32 num_words = ((num_pixels + 1) / 2);
const u32 src_x = m_GP0_command[1] & UINT32_C(0xFFFF);
const u32 src_y = m_GP0_command[1] >> 16;
Log_DebugPrintf("Copy rectangle from VRAM to CPU offset=(%u,%u), size=(%u,%u)", src_x, src_y, width, height);
if ((src_x + width) > VRAM_WIDTH || (src_y + height) > VRAM_HEIGHT)
{
Panic("Out of bounds VRAM copy");
return true;
}
2019-09-18 05:14:31 +00:00
// all rendering should be done first...
FlushRender();
// TODO: A better way of doing this..
std::vector<u32> temp(num_words);
ReadVRAM(src_x, src_y, width, height, temp.data());
for (const u32 bits : temp)
m_GPUREAD_buffer.push_back(bits);
if (m_debug_options.dump_vram_to_cpu_copies)
{
DumpVRAMToFile(SmallString::FromFormat("vram_to_cpu_copy_%u.png", s_cpu_to_vram_dump_id++), width, height,
sizeof(u16) * width, temp.data(), true);
}
// Is this correct?
return true;
}
2019-09-17 14:58:30 +00:00
bool GPU::HandleCopyRectangleVRAMToVRAMCommand()
{
if (m_GP0_command.size() < 4)
return false;
const u32 src_x = m_GP0_command[1] & UINT32_C(0xFFFF);
const u32 src_y = m_GP0_command[1] >> 16;
const u32 dst_x = m_GP0_command[2] & UINT32_C(0xFFFF);
const u32 dst_y = m_GP0_command[2] >> 16;
const u32 width = m_GP0_command[3] & UINT32_C(0xFFFF);
const u32 height = m_GP0_command[3] >> 16;
Log_DebugPrintf("Copy rectangle from VRAM to VRAM src=(%u,%u), dst=(%u,%u), size=(%u,%u)", src_x, src_y, dst_x, dst_y,
width, height);
if ((src_x + width) > VRAM_WIDTH || (src_y + height) > VRAM_HEIGHT || (dst_x + width) > VRAM_WIDTH ||
(dst_y + height) > VRAM_HEIGHT)
{
Panic("Out of bounds VRAM copy");
return true;
}
FlushRender();
2019-09-17 14:58:30 +00:00
CopyVRAM(src_x, src_y, dst_x, dst_y, width, height);
return true;
}
2019-09-26 11:44:02 +00:00
void GPU::UpdateDisplay() {}
void GPU::UpdateDrawingArea() {}
2019-09-14 10:45:26 +00:00
void GPU::ReadVRAM(u32 x, u32 y, u32 width, u32 height, void* buffer) {}
void GPU::FillVRAM(u32 x, u32 y, u32 width, u32 height, u16 color) {}
2019-09-14 06:43:39 +00:00
2019-09-12 15:10:08 +00:00
void GPU::UpdateVRAM(u32 x, u32 y, u32 width, u32 height, const void* data) {}
2019-09-17 14:58:30 +00:00
void GPU::CopyVRAM(u32 src_x, u32 src_y, u32 dst_x, u32 dst_y, u32 width, u32 height) {}
2019-09-12 02:53:04 +00:00
void GPU::DispatchRenderCommand(RenderCommand rc, u32 num_vertices) {}
void GPU::FlushRender() {}
void GPU::RenderState::SetFromPolygonTexcoord(u32 texcoord0, u32 texcoord1)
{
SetFromPaletteAttribute(Truncate16(texcoord0 >> 16));
SetFromPageAttribute(Truncate16(texcoord1 >> 16));
}
void GPU::RenderState::SetFromRectangleTexcoord(u32 texcoord)
{
SetFromPaletteAttribute(Truncate16(texcoord >> 16));
}
void GPU::RenderState::SetFromPageAttribute(u16 value)
{
const u16 old_page_attribute = texpage_attribute;
value &= PAGE_ATTRIBUTE_MASK;
if (texpage_attribute == value)
return;
texpage_attribute = value;
texture_page_x = static_cast<s32>(ZeroExtend32(value & UINT16_C(0x0F)) * UINT32_C(64));
texture_page_y = static_cast<s32>(ZeroExtend32((value >> 4) & UINT16_C(1)) * UINT32_C(256));
texture_page_changed |=
(old_page_attribute & PAGE_ATTRIBUTE_TEXTURE_PAGE_MASK) != (value & PAGE_ATTRIBUTE_TEXTURE_PAGE_MASK);
const TextureColorMode old_color_mode = texture_color_mode;
texture_color_mode = (static_cast<TextureColorMode>((value >> 7) & UINT16_C(0x03)));
if (texture_color_mode == TextureColorMode::Reserved_Direct16Bit)
texture_color_mode = TextureColorMode::Direct16Bit;
texture_color_mode_changed |= old_color_mode != texture_color_mode;
2019-09-18 14:55:06 +00:00
const TransparencyMode old_transparency_mode = transparency_mode;
2019-09-18 14:55:06 +00:00
transparency_mode = (static_cast<TransparencyMode>((value >> 5) & UINT16_C(0x03)));
transparency_mode_changed = old_transparency_mode != transparency_mode;
}
void GPU::RenderState::SetFromPaletteAttribute(u16 value)
{
value &= PALETTE_ATTRIBUTE_MASK;
if (texlut_attribute == value)
return;
texture_palette_x = static_cast<s32>(ZeroExtend32(value & UINT16_C(0x3F)) * UINT32_C(16));
texture_palette_y = static_cast<s32>(ZeroExtend32((value >> 6) & UINT16_C(0x1FF)));
texlut_attribute = value;
texture_page_changed = true;
}
2019-10-05 13:25:06 +00:00
void GPU::RenderState::SetTextureWindow(u32 value)
{
value &= TEXTURE_WINDOW_MASK;
if (texture_window_value == value)
return;
texture_window_mask_x = value & UINT32_C(0x1F);
texture_window_mask_y = (value >> 5) & UINT32_C(0x1F);
texture_window_offset_x = (value >> 10) & UINT32_C(0x1F);
texture_window_offset_y = (value >> 15) & UINT32_C(0x1F);
texture_window_value = value;
texture_window_changed = true;
}
bool GPU::DumpVRAMToFile(const char* filename, u32 width, u32 height, u32 stride, const void* buffer, bool remove_alpha)
{
std::vector<u32> rgba8_buf(width * height);
const char* ptr_in = static_cast<const char*>(buffer);
u32* ptr_out = rgba8_buf.data();
for (u32 row = 0; row < height; row++)
{
const char* row_ptr_in = ptr_in;
for (u32 col = 0; col < width; col++)
{
u16 src_col;
std::memcpy(&src_col, row_ptr_in, sizeof(u16));
row_ptr_in += sizeof(u16);
*(ptr_out++) = RGBA5551ToRGBA8888(remove_alpha ? (src_col | u16(0x8000)) : src_col);
}
ptr_in += stride;
}
return (stbi_write_png(filename, width, height, 4, rgba8_buf.data(), sizeof(u32) * width) != 0);
}